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1 Introduction 

1.1 Hearing disorders in general 

Hearing disorders are amongst the most frequent sensory organ deficits in humans. Its causes 

are unknown in around 40% of all the investigated cases. In 30%, the etiology can be genetic, 

where hearing losses caused by various syndrome-causing genetic defects take about 3%, and 

cases with nonsyndromic origin take between 25-29%. Prenatal causes (rubella, CMV, 

alcohol, measles, bone malformations, etc), account for 11-12%, perinatal etiology (asphyxia, 

prematurity, drugs, etc) account for 9%. Postnatal etiology (meningitis, trauma, 

chemotherapy, for example) accounts for about 6-8% [1]. Probably some of the cases that 

were previously described as unknown are of genetic origin as well. 

1.2 A short overview of the hearing process 
The human hearing system is divided into three parts: the external ear, the middle ear, and the 

inner ear. 

The external ear consists of the auricle, the external auditory canal and the eardrum 

(tympanum). The middle ear consists of the hearing ossicles (malleus, incus, stapes- hammer, 

anvil, stirrup), situated in the tympanic cavity. The Eustachian tube joins the tympanic cavity 

with the outer air, and hence equalizes pressure through the nasopharynx. In the inner ear, the 

cochlea and the semicircular canals can be found.  

The energy of the sound, collected by the auricles, passes through the external auditory canal, 

then the movements of the air are displaced by the eardrum onto the chain of heaing ossicles, 

and finally into the fluid-filled space of the inner ear, the cochlea, by the stapes through the 

oval window. If this energy would simply pass from the surrounding air into some fluid, most 

of it would be lost, that is, reflected back from the surface of the fluid. The eardrum acts as an 

amplifier, it’s surface is around 55 mm2 on the outside, and the surface of the malleus 

(hammer) is about 3.2 mm2 on the inside, that joins the eardrum from the direction of the 

middle ear. This alone makes a 17 times amplification possible, which takes 24,5dB gain. If 

the pressure would not be equalized by the Eustachian tube, the eardrum could become too 

tense, and that would mean to lose this amplification. The chain of the hearing ossicles 

provides some more gain, around 1,3-1,5 times [2]. 
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Inside the cochlea, the movement of the fluid is transformed into electrical signals by the 

organ of Corti (the process of the so-called mechanoelectrical transduction), and then this 

information arrives into the central nervous system through the VIIIth cranial nerve. 

(Figure 1.)

 
Figure 1. 

The schematic drawing of the human hearing system 
To the left the three parts are shown, the outer-, middle-, and the inner ear. The cochlea is cut into half, 

and is shown in detail. The organ of Corti – with its complex structures – is shown in the insert to the right 

1.3 Genetics of hearing 

To date, approximately 100-150 genes are estimated to be involved in the physiological 

processes related to hearing. 146 disease-causing alleles of 42 genes have been identified so 

far (57 dominant, 77 recessive, 8 X-linked, 1 Y-linked, 2 modifiers, 1 auditory neuropathy) 

[3]. The large number of genes and loci complicate the genetic analysis of nonsyndromic 

hearing losses. 

1.3.1 Nomenclature of nonsyndromic hearing losses 

The three letters “DFN” (DeaFNess), without a suffix, are only used in case of nonsyndromic 

genetic disorders that are X-linked. 

“DFNA” denotes autosomal dominant deafness that is passed directly through generations. 

“DFNB” denotes autosomal recessive nonsyndromic hearing losses that require the allele to 

be present on both homologus chromosomes. All three abbreviations are used with a 

numbered suffix that corresponds to the order they were described and published. These 

names do not necessarily correspond to different genes; they rather denote loci. In fact, there 
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are more genes that have more DFN’s, there are genes that’s mutation can cause both 

dominant and recessive forms of nonsyndromic hearing losses. 

1.3.2 The studied genes 

Gene 

Product 
 

Family Name Chromosome 
localization 

Size(bp)/
number 

of coding 
exon(s)/ 
size of 
coding 
exon 
(bp) 

Name Length 
(AA)/molec
ular weight 

(kDa) 

Site of 
expression 

DFN 
locus 

GJB2 13q12-13 [4] 5510/1/ 
681 

Connexin26/Gap 
Junction Beta-2 
subunit 

226/26,215 inner ear, skin DFNB1 
[5], 
DFNA3 
[6] 

GJB3 1p35.1 5178/1/ 
813 

Connexin 
31/Gap Junction 
Beta 3 subunit 

270/30,818 cochlea, VIIIth 
cranial nerve 
[7] 

DFNA2B 
[8] 

GJB6 13q12 10356/1/ 
783 

Connexin 
31/Gap Junction 
Beta 6 subunit 

261/30,387 trachea, 
thyroid, brain, 
cochlea[9] 
[10] 

DFNA3 
[10] 

  
C

on
ne

xi
ns

 

GJA1 6q21-q23.2 14129/1/? Connexin 
43/Gap Junction 
Alfa 1 subunit 

382/43,008 Heart [11], 
liver, 
autonomic 
and sensory 
neurons [12]  

DFNA3 
[13] 

Unconventional 
myosins 

MYO6 6q13 170346/ 
32/? [14] 

Myosine VI 1294/149, 
691 

Inner hair 
cells [15][16] 

DFNA22 
[17], 
DFNB37 
[18] 

Transcription 
factors 

POU3F4 Xq21.1 1491bp/?/
1083 

Brain-specific 
homeobox/POU 
domain protein 4 

361/39,427 Brain, neural 
tube, otic 
vesicle 
(mouse) [19] 

DFN3 [20]

SLC26A4 7q31 57175/?/? Pendrin 780/85,723 inner ear, 
thyroid, 
kidneys [21] 

DFNB4 
[22] 

Ion channels 

KCNQ4 1p34 54677/?/ 
695 

Potassium 
voltage-gated 
channel 
subfamily KQT 
member 4 

695/77,092 Outer hair 
cells, basal 
lamina [23] 

DFNA2A 
[24] 

 COCH 14q12-q13 16058/?/? Cochlin 
precursor/Coagu
lation factor C 
homology 

550/59,483 Cochlea, 
vestibulum 
[25] 

DFNA9 
[26] 

Mitochondrial 
ribosomal RNA 

12s rRNA/ 
MTRNR1 

19q13.33 [27] 954/1/954 12s rRNA - Mitochondria 
in every 
human cell 

DFNA4 
[27][28] 
[29] 

Table 1. 
A table showing the genes, some of their properties, and the DFN locus that was mapped to them. 

The numbers in square brackets correspond to their respective numbers in the chapter “References" 

1.3.2.1 Connexins 
Connexins are a family proteins that form the so-called gap junctions between cells. There are 

24 known connexins until today. A gap junction consists of two connexons, which are 
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composed of six connexins (Figure 2.) Connexins can form heterohexamers, so they can 

substitute each other, in these cases, their function can be partially restored. Connexins are 

only expressed in vertebrates. In humans, connexins are mostly expressed in the connective 

tissue underlying the skin, in the central and peripheral nervous system, in the kidneys, in the 

liver, and in the thyroid for example. They enable the flux of some smaller molecules or 

hydrated ions. The pore, or channel, that is formed by the hexamers is 10-15 Å in diameter, 

and can let pass particles through in the size range between 400Da and 1kDa, depending on 

the type of the actual connexin [30]. In the cochlea [31][32] connexins facilitate the flux, and 

the recycling of K+ ions from the intracellular space to the endolympha [33]. 

 
Figure 2. 

Organization of connexins and their approximate site of expression in the inner ear. 
The insert shows the units of the gap junction (“Connexin”, painted yellow), the “Connexon”, which is 

formed by six connexins, and the whole gap junction, which is formed by two connexons. In the inner ear, 
K+ is transported from the hair cells through the Hensen and Claudius cells to the stria vascularis  and 

from there they are transported back to the endolympha. 
Reproduced from [34] 

1.3.2.1.1 GJB2 (Connexin 26) 
DFNB1 was the first identified locus; its autosomal recessive mutation causes nonsyndromic 

hearing loss [5]. Using co-segregation analysis, this locus was mapped to 13q12-13[4]. 
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In 1994, Chaib et al. described the first dominant nonsyndromic hearing loss of genetic origin 

to 13q12-13.[6] Mutation in the coding region of Gap Junction protein Beta 2 (GJB2) - also 

called Connexin26 (Cx26) - was the first to be linked to nonsyndromic hearing loss of genetic 

origin.[35] Connexin 26 is a protein, which belongs to the family of connexins. The length of 

the functional, protein coding exon of GJB2 is 681 bp, and it codes a 226 amino acid 

polypeptide. 35delG causes a frameshift mutation, the deletion of one guanine residue in a 

stretch of six guanines in the coding region of the gene at position 35, resulting in a nonsense 

mutation at the 13th codon. 35delG mutation of the GJB2 gene accounts for 7-15% of 

nonsyndromic hearing losses of genetic origin in the European population [36][37][38], and 

regarding this mutation, about 1-5% of the Caucasian population is a carrier [39] 

1.3.2.1.2 GJB3 (Connexin 31) 
This protein was first cloned in 1998 [40]. Xia et al. [8] mapped DFNA2B to this gene in 

1998. It has been shown also, that mutations in the coding region of this protein can lead to 

ARNSHL as well [41]. This protein is mostly expressed in the cochlea, and in the VIIIth 

cranial nerve [7]. Liu et al. showed that in the mouse cochlea CX31 is co-expressed with 

Cx26 [42]. Its chromosome localization is 1p35. 

1.3.2.1.3 GJB6 (Connexin 30) 
This protein is mostly expressed in the skin, in the trachea, thyroid, brain, and in the cochlea 

[9][10]. DFNA3 was mapped to this locus [10]. Part of a digenic GJB2/GJB6 deafness was 

also mapped to this gene [43] 

1.3.2.1.4 GJA1 (Connexin 43) 
The gene map locus for GJA1 is 6q21-q23.2. It has been shown by Liu et al. that mutations in 

this gene can lead to ARNSHL [13], although this connexin is mostly expressed in the human 

heart [11], the liver, and in certain autonomic and sensory neurons [12]. 

1.3.2.2 MYO 6 (Myosin VI) 
The gene map locus for MYO6 is 6q13. This gene has 32 exons, its length is 70 kb [14]. Two 

loci, DFNA22 [17] and DFNB37 [18] were both mapped to this gene. The protein product of 

MYO6 plays an important role in the intracellular vesicle and organelle transport and acts as 
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an anchor protein as well [44]. There are reports that MYO6 may be necessary for the 

maturation of IHCs [15] [16] 

1.3.2.3 Transcription factors 
Transcription factors are proteins that bind to the DNA and regulate the production of mRNA, 

and hence gene expression. They play an important role in the development of cells and the 

organism. 

1.3.2.3.1 POU3F4 
Gene map locus is Xq21.1. The rat homologue of this gene, called RHS2 is expressed in the 

inner ear during the embryonic development [18]. DFN3 has been shown to map here [20]. 

There may be inner ear malformations connected to mutations in this locus described as early 

as 1967 [45], that later have been confirmed [46]. 

1.3.2.4 Transporter proteins 
These proteins are involved in the transport of certain types of ions or molecules across 

membranes. Sometimes they work against the chemical concentration gradient, and in these 

cases, they use ATP as the source of energy. 

As the processes of hearing, more specifically the mechanoelectric transduction in the organ 

of Corti needs very precisely controlled ionic composition of fluids in the cochlea [2] (and see 

also Figure 1. and Figure 2.), these type of proteins play a crucial role in the maintenance of 

homeostasis in the inner ear, and thus in the process of hearing. 

1.3.2.4.1 SLC26A4 (Pendrin, PDS gene) 
Its chromosome localization is 7q31. The gene’s transcript is around 5 kb, and it is coding a 

780 AA long protein. It is expressed in the thyroid, the inner ear and in the kidneys. SLC26A4 

is an anion transporter; it transports chloride, iodide [47] and carbonate [21]. DFNB4 is 

mapped here [22], as well as the mutation that causes the Pendred syndrome [48], and the 

Enlarged Vestibular Aqueduct syndrome [49]. 

1.3.2.4.2 KCNQ4 
Its chromosome localization is 1p34. This is a Potassium channel, which regulates the ionic 

composition of the endolympha in the inner ear, and is also involved in the electrical signal 

transduction. It was first cloned in 1999 [24]. KCNQ4 is only expressed in the OHCs, in their 
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basal membrane [23]. In the vestibular system, KCNQ4 is only expressed in the type I hair 

cells and the afferent nerve endings ensheathing these sensory cells. It is also expressed in 

certain nuclei of the central auditory pathway, and is absent from most other regions of the 

central nervous system. It is present, amongst others, in the cochlear nuclei, the nuclei of the 

lateral lemniscus, and the inferior colliculus. This is the first ion channel shown to be 

specifically expressed in a sensory pathway [23]. DFNA2 is known to map here [24]. 

1.3.2.5 COCH (Cochlin) 
Its chromosome localization is 14q12-q13. DFNA9 has been mapped to this gene [25]. The 

mutation in the COCH gene prevents the deposition of cochlin into the extracellular matrix as 

suggested by Grabski et al. [25]. 

1.3.2.6 12s rRNA (MTRNR1) 
It is located on 19q13.33. The gene codes the mitochondrial 12S rRNA. It is found to be the 

site of a mutation that has been identified as a basis for aminoglycoside-induced deafness and 

familial progressive sensorineural deafness. Because DFNA4 maps to 19q13 [27] and because 

of a relationship of the ribosomal protein gene to the ribosomal RNA, the gene encoding 

mitochondrial ribosomal protein S12 may be the site of mutations causing DFNA4 [28][29]. 

This hypothesis is further supported by the facts that the mitochondrial ribosome is very 

similar to the bacterial chromosome, and bacterial ribosomes are the main targets of 

aminoglycoside antibiotics [50]. 

1.4 The use of Guthrie papers 

A Guthrie paper is a specially manufactured absorbent filter paper. Blood is drawn to it after 

2-4 days of birth, from the finger, heel, or toe. The blood saturates the paper, and is dried for 

several hours, in room air, or in exsiccator. 

 Since the 1950's [51] and 1960’s [52] national neonatal screening programs begun to operate 

in the advanced countries, they mostly perform screening for metabolic diseases [53][54]. 

These programs generated an enormous amount of DBS’es on Guthrie cards. These cards 

have the advantage of easy transportation, and their storage conditions are much cheaper than 

any other way of storing blood samples. 
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1.5 dHPLC 

During the dHPLC measurements the DNA, under specialized conditions, forms hetero-, and 

homoduplexes (wild type-wild type, SNP-SNP, SNP-wild type, and wild type-SNP), that can 

be separated, and detected. This method makes it possible to discover unknown genetic 

variants, the presence of mutations, without having to perform an actual sequencing analysis. 

During these experiments, an SNP containing part of the DNA is amplified with PCR. After 

the PCR reaction the amplicon is gradually cooled from 95 °C to 65 °C so that four types of 

duplexes from: heteroduplexes, that contain one copy of the “faulty” region, and one copy of 

the error-free region, and two types of homoduplexes, that contain either only the error-free 

parts or only the SNPs. Because of their sequence differences these duplexes form distant 3D 

structures, that are eluted at different speeds, thus at different time frames from the HPLC 

column. By graphing the resistance of the solution - that is eluted from the column - as a 

function of time, we get a so-called “chromatogram”. Based on this chromatogram, it is 

possible to tell how many, and what type of duplexes there are. If there is more than one peak 

on the graph, than there is likely an SNP in the amplified DNA region. [61] 

By utilizing this method the costs can be reduced, since only those samples have to be 

sequenced that are actually found to contain some mutation. By using this technique it is 

possible to perform around 200-300 screens daily. The actual number depends on many 

factors, including, but not limited, to the volume of sample injected onto the column, and the 

volume of the buffers that has to be supplied during the measurements. Because of this 

relatively high number of possible screens per day, this is a so-called “high throughput” 

method. 

1.6 AS-PCR 

AS-PCR exploits the use of primers that overlap with the mutation site. Two forward primers 

are designed in a way, that one of them has a perfect match with the SNP in question, whereas 

the other corresponds to the wild genotype. Both the wild type sequence and the SNP must be 

known for which the primers are designed. 

AS-PCR is used to discriminate between the presence of the wild genotype and the mutant 

allele. Because base mismatch will not enable replication, PCR amplicons will be produced 
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only in case of perfect base pairing. This involves two reactions, one with each primer. 

(Figure 3.). 

 

 
Figure 3. 

Theory of the AS-PCR experiments 
Two primers are designed so that at the 3’end one primer contains the SNP (“mutant primer”), while the 
other does not (“wild primer”). If there is that SNP than the “mutant primer” elongates, while - because 
of the mismatch - the other cannot. In case of the wild type allele, the “mutant primer” cannot elongate, 
while the “wild primer” can. In case of heterozygosis, both primers can elongate and both their products 

can be observed with gel electrophoresis, in about equal quantities. 
 

This way all three possible genotypes are indicated with one combination of the amplicons, so 

homozygous wild, homozygous mutant and heterozygous alleles can all be detected 

(Figure 4.). 

 
Figure 4. 

This is a hypothetical picture of three patients with three genotypes. 
1 denotes the homozygous wild, 2 denotes the heterozygous, and 3 denotes the homozygous recessive 

(„mutant”) genotype, respectively. M: molecular weight calibration, IC: internal control, 35delG: 35delG 
allele. w: amplicon of the wild type sequence matching forward primer, m: amplicon of the 35delG-

matching forward primer. 
In case both primers can be seen the patient is heterozygous (case 2),. In case of homozygosity (cases 1 and 

3), only one of the primers can elongate and can its product be detected. 
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2 Aims 
Our aim was to improve the genetic testing of hearing loss by optimizing, or determining the 

following parameters: 

I. Evaluation of three different DNA extraction methods from dried blood spots for 

genetic testing. 

II. Assessment of the quality and quantity of the DNA extracted from DBS’es as a function 

of time: how does the length of storage influence these parameters? 

III. Determination of the number of PCR experiments that can be carried out from a 

genomic DNA solution extracted from a dried blood spot. 

 

Our aims were also to determine the following parameters in our cohorts of patients: 

IV. Determination of the frequency of the 35delG mutation of the GJB2 gene in our group 

of patients. 

V. Description of other mutations, that occur in our groups of patients, in the GJB2 gene. 

VI. Determination of the abundance of mutations in other (non-GJB2) genes in our 

population. 

VII. Explore how mutations in other genes affect the patient’s hearing? 

VIII. Determination of the correlation of the genetic profile with the audiological profile of 

our patients. 

IX. Potential benefits for cochlear implantation from these experiments - is it possible to 

deduce the audiological profile based on the genetic findings of a person? 
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3 Materials and methods 

3.1 Sample and patient selection 

All participants involved in the trials were informed according to the Guidelines of 

University's Ethical Committee, and all have signed a written consent. 

3.1.1 Guthrie cards 

Double blind tests were performed on the spot blood samples taken for the routine, population 

wide metabolic screening tests of neonates. The samples were taken on Guthrie cards at the 

3rd-4th life day of newborns at any neonatal ward where the neonates were cared in the eastern 

part of Hungary and sent via conventional mail. The test cards were stored at room air at the 

Department of Pediatrics, University of Szeged. The Guthrie cards were selected as follows: 

48 pieces from the years 1996, and 1997, and further 96 pieces from the years 1999, 2000, 

2001, 2004, 2005 respectively. The total number of DBS'es was n=576. As these cards were 

selected randomly, they could be used as a "generic population sample". 

3.1.2 Patients 

The other population we examined consists of 318 of patients. These patients were Cochlear 

Implant (CI) users, their relatives, CI candidates, their relatives, and a few individual patients 

from the ENT Clinic. CI users and CI candidates were selected based on the following 

criteria: if there was a family history of hearing losses, and there were no organic 

abnormalities (anatomical variations, or developmental problems) or other diseases that are 

known to cause hearing loss or deafness in the patient's history. In case of the CI users 

(n=20+32=52) and CI candidates (n=56) the average hearing threshold level was bellow 70dB 

and speech recognition performance was under 25%. Those patients and CI users were 

excluded - and hence left out of the trial -, whose patient history contained some form of 

disease that can cause deafness, or who suffered a head trauma, or head injury, that can 

account for their hearing problems. The CI users’ and CI candidates’ family members (n=163) 

have various levels of hearing loss, from no hearing loss at all to severe to moderate levels. 

There were some individuals who wanted to participate in our study with various levels but 
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with unknown origin of hearing loss (n=47). 20 CI users (out of n=52) were individuals with 

no screened relatives. Our group of control persons consisted of people with hearing threshold 

levels at 5dB or better on both ears (n=20) and no family history of hearing losses. 

3.2  Molecular biology testing  

3.2.1 Selection of the genomic regions 

Genomic regions were selected that contained known and published mutations at the time of 

the planning of the experiments. The decisions were based on the table found at 

http://hearing.harvard.edu/db/genelist.htm. As the planning stage of the experiments took 

place in the spring of 2004, and until then the table contained relatively fresh data, we used 

this as our starting point. See the slightly edited version of the table (Table 9.) in “Appendix 

A– Primers and sequences”, 9.1 “A concise table on the involved genes, regions, and their 

related publications”, on page 59. 

3.2.2 DNA extraction 

3.2.2.1 Preparation of DNA from DBS for AS-PCR 

4 mm diameter pieces from the bloodspot test cards were punched out. Three methods were 

examined to prepare genomic DNA from the Guthrie papers.  

The first method (method “a”) was as follows: the paper discs were put into PCR tubes along 

with 200 µl 1x PCR buffer (Eppendorf HotMaster taq). The DNA was extracted from the 

DBS with the following procedure: 10 minutes at 96 °C then 1 minute at 25 °C and 10 

minutes at 96 °C again, in a thermal cycler. The samples were then centrifuged at 16 000 g for 

2 minutes. The supernatant was then transferred into a sterile microcentrifuge tube, and stored 

at 4 °C until utilization [55][56]. 

In the second series of experiments (method “b”) the paper discs were put into 200 µl 1x PCR 

buffer (Eppendorf HotMaster taq), and then the PCR tubes into 55°C water bath for 10 

minutes. The samples then were centrifuged at 16 000 g for 2 minutes, and the supernatant 

was then used for PCR tests. 
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The third method (method “c”) involved the same preparation steps as method two, but the 

samples were sonicated for 10 minutes in the water bath at 55°C. The samples were then 

centrifuged at 16 000 g and the supernatant was then used. 

3.2.2.2 Preparation of DNA from venous blood for AS-PCR 

3 ml blood was collected from patients having Cochlear Implant, their relatives, CI 

candidates, their relatives, and a few people with hearing loss of unknown origin (see 3.1.2 

“Patients” on page 11 for details). Blood anti-coagulant was EDTA. Genomic DNA (gDNA) 

was purified from 400 µl of blood using Versagene Blood Kit (Gentra) according to the 

manufacturer’s instructions. The concentration of the DNA was measured with 

spectrophotometer and was calculated by the adsorption at 260 and 360 nm. 

3.2.3 Polymerase Chain Reactions  

3.2.3.1 DNA integrity test reactions 

These reactions were carried out using HotMaster Taq DNA Polymerase (Eppendorf). 30 µl 

final volume of the reaction mix contained 3 µl (10x) HotMaster Taq buffer (Eppendorf), 2.5 

µl dNTP (2.5 mM), 0.5-0.5 µl (15 pM) DF2F-DF2R primer pair (Table 1); 1 U HotMaster 

Taq (Eppendorf); 6 µl gDNA template and 16.5 µl water. 

PCR program was as follows: 2 minutes at 96°C for 35 cycles, (96°C 30 seconds – 61°C 30 

seconds - 68°C 35 seconds), and after these 35 cycles 96°C for 5 minutes. Negative control 

experiment was also done with paper discs originating from the “blood-free” parts of the 

Guthrie papers. PCR fragments were analyzed by agarose gel electrophoresis on 1.5 % 

agarose gel (AbGen) with 1X TBE buffer. The internal control used in all the AS-PCR 

experiments were the primer pair ICF and ICR. They amplificate a part of the serine 

proteinase inhibitor gene (see Table 2. in “Properties of DNA purified from Guthrie cards and 

from EDTA-anticoagulated blood” on page 17) 

3.2.3.2 AS-PCR reactions 

30 µl final volume of the reaction mix contained: 3 µl (10x) HotMaster Taq buffer 

(Eppendorf), 2.5 µl dNTP (2.5 mM), 0.5-0.5 µl primers GJC-GJW pair for wild allele 

detection and GJC-GJM for 35delG mutant allele detection (Table 2.). (15 pM), 0.4-0.4 µl 



 

 

14

 

(15 pM) internal control primer pair (ICF-ICR); 1 U HotMaster Taq (Eppendorf); 6 µl gDNA 

template and 16,5 µl water. 

The PCR program was as follows: first, denaturation step at 95 °C for 5 minutes, then 35 

cycles at 96 °C for 30 seconds, at 65 °C for 35 seconds, and at 68 °C for 38 seconds , and as 

the last step, 10 minutes incubation time at 68 °C. PCR fragments were analyzed by agarose 

gel electrophoresis on 1.5 % agarose gel (AbGen) with 1X TBE buffer. 

3.2.4 DNA sequencing and sequence analysis 

PCR fragments were generated as described in section 3.2.3.2. PCR products were desalted 

on Microcon columns (Millipore). The purified PCR products were eluted in 30 µl of water. 

The DNA sequences were determined by automated sequencing at Macrogen Inc. (Korea) on 

both strands. The sequences were aligned to the wild type reference sequence with the 

CLUSTALW program [58]. 

3.2.5 dHPLC experiments 

We used the Varian Inc. Helix System and Varian Star Workstation at the Department of 2nd 

Internal Medicine and Cardiological Centre. For the table of dHPLC programs that were used 

with our primers during our tests please see Table 10. on page 80 in 11 “Appendix C– dHPLC 

parameters”. 

The composition of the buffers used with the device (“Buffer A” and “Buffer B”, 

respectively) are as follows: 

Buffer A: ≤ 2% TEAA in 3000ml aqueous solution. [60] 

Buffer B: ≤25% acetonitrile, ≤1% triethylamine, ≤0.6% acetic acid, ≤0.01% EDTA sodium 

salt in 3000ml aqueous solution [61] 

3.3 Audiology testing 

During our audiological examinations subjective audiological tests were performed. By using 

audiograms, it was possible to assess the hearing of our patients according to the routine 

evaluation (clinical) procedure. 
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Most of the subjective audiology measurements were made with GSI 16 audiometers at the 

audiology station of the department. Some audiograms were taken at other institutions in the 

country. 

The standard procedure involved measuring the pure tone hearing threshold levels at the 

following frequencies: 125 Hz, 250 Hz, 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz, 8000 Hz, 

according to the international standards. 
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4 Results 

4.1 Preparation of DNA from DBS for AS-PCR 

Three methods were examined in order to extract genomic DNA from dried blood spots. 

Regions of the GJB2 gene from the gDNA were amplified with PCR, and then the samples 

were analyzed with gel electrophoresis. 

During our work, the first method (method “a”, with boiling at 98°) was used, as described in 

3.2.2.1 “Preparation of DNA from DBS for AS-PCR” on page 12. By gel electrophoresis of 

the PCR products, it was found that the method with water bath and ultrasound sonication 

gave somewhat worse results. (Figure 5.) As also can be seen on the figure, methods “a” and 

“b” gave similar results, but as method “a” was technically simpler to carry out, it was used 

later on. 

 
Figure 5. 

Comparison of the three methods for DNA extraction from blood drops on Guthrie cards. 
1 = 0.5μl, 2 = 2.5μl, 3 = 10 μl genomic DNA template solution 

(a): 10 min @96°C 1 min @25°C 10 min @96°C minutes in thermal cycler 
(b): 10 min @55°C in water bath 

(c): 10 min @55°C in water bath with ultrasound 
Samples 1, 2, 3 are always from the same blood spot, on all three ((a), (b). (c)) respective series in the same 

years. Note, that while series (a) and (b) yielded similar results, there are missing bands in series (c), it’s 
quality is noticeably inferior. 
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4.2 Properties of DNA purified from Guthrie cards and from EDTA-

anticoagulated blood 

200 µl of DNA solution were obtained from one tube of EDTA anticoagulated blood and 

200 µl DNA solution from one 4 mm diameter piece of the bloodspot test cards. 

The amount and the integrity of the purified DNA samples was tested by PCR with the 

primers DF1F and DF2F (see Table 2.) which amplify parts of GJB2’s coding exon. The 

length of the PCR products was 420 and 324 base pairs. They covered the whole exon. The 

experiments were performed with 6 μl of genomic DNA (gDNA) template. The samples were 

analyzed by gel electrophoresis. 1x, 5x, 50x dilutions were made from blood spots and tested 

by PCR. The 200 µl gDNA solution, when diluted 50 times, is still acceptable for PCR 

testing, and that volume (200 µl x 50 = 10 000 μl ) is sufficient theoretically for more than a 

thousand PCR reactions per purified sample, or 4mm paper disc (Figure 6.) As a negative 

control, a blood-free paper disc was used from a Guthrie card. 

 

 
Figure 6. 

Approximate amount of PCR products when DNA is extracted from a 4mm paper disc from a Guthrie 
card 

Numbers: 1. no dilution, 2. diluted 5x times, 3. 50x 4. 500x, 5. 1000x dilution, respectively 
“bp”: length calibration 

The picture shows the PCR product of the whole coding exon of the GJB2 gene, the primer used was 
DF2F. The length of the PCR product is 809 bp. The intensity of the bands lowers, as the applied gDNA 

solution is diluted. 
 

As Figure 7. shows, even the DNA extracted from a twelve years old blood spot gave good 

results. 
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Figure 7. 

PCR experiments showing the impact of age of the Guthrie cards the DNA was extracted from, on he 
amount of PCR products. 

The primer DF2F was used. 1 kbp and 750 kbp are the molecular weight calibrations (“M”). 
As the picture shows, there were no aspecific PCR products when this primer was used, with the (a) 
method. Here 1, 2, and 3 all denote different samples. Three samples were tested from every year. 

 
There were no experiments that produced no results, and this means, that it was possible to 

screen for 35delG with AS-PCR on all 576 DBS samples. Figure 7. shows randomly selected 

samples from our tests. As shown on the image, there are no smaller sized fragments in 

detectable quantity bellow our AS-PCR product on the gel. 

The gDNA solution prepared from whole blood could be diluted by 100x and it still gave 

acceptable results. (Figure 8.) When diluted further (500x, 1000x, 5000x), the PCR 

experiments were less reliable, the bands disappeared. 

 
Figure 8. 

Genomic DNA extracted from EDTA-anticoagulated blood, and diluted. 
The GJW primer was used in this experiment (detects the 35delG wild genotype). 

Numbers denote the degree of dilution. 
In the last line PCR primer dimers can be seen that hybridize to each other during the PCR runs, yielding 

double stranded DNA fragments in approximately 50 bps in size. As the amount of PCR products 
decreases, the amount of such PCR-byproducts grows, hence the increase of intensity of those bands. 
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The longest PCR product used by us is the 809 bp long product of the primers GJB2F and 

GJB2R (Table 2.) This PCR product was used to validate the AS-PCR experiments with 

sequence analysis. 

Primer name Sequence Description

ICF CCC ACC TTC CCC TCT CTC CAG GCA AAT GGG Internal control (serine proteinase inhibitor gene) 

ICR GGG CCT CAG TCC CAA CAT GGC TAA GAG GTG Internal control (serine proteinase inhibitor gene) 

GJC AGT GAT CGT AGC ACA CGT TCT TGC A Common reverse primer for GJB2  

GJW GCA CGC TGC AGA CGA TCC TGG GGA G Primer for 35delG Wild allele detection 

GJM CAC GCT GCA GAC GAT CCT GGG GAT Primer for 35delG mutant allele detection 

DF2F TCT CCC TGT TCT GTC CTA GC GJB2 exon and flanking region for sequencing 

DF2R TTT CCC AAG GCC TCT TCC AC GJB2 exon and flanking region for sequencing 

Table 2. 
Primers used in the DNA extraction and purification experiments 

 

As can be seen on (Figure 9.) there were no aspecific PCR products in the AS-PCR 

experiments. 

 
Figure 9. 

A picture showing a 35delG AS-PCR experiment. 
M: Molecular weight (ladder), w: wild type allele (primer GJW), m: 35delG+ allele (primer GJM) IC: 

internal control (primers ICF or ICR) 
There are no aspecific bands on this gel. 

Samples 1, 2, 3, 4, 6, and 7 all represent the homozygous wild genotype. Sample 5 belongs to a patient with 
a 35delG heterozygous genotype (both PCR primers elongated). Sample 8 shows a 35delG homozygous 
recessive genotype; as no 35delG wild allele was found, the GJW primer could not elongate during the 

PCR runs. 
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Regarding the other primers in this present work, the PCR experiments yielded no aspecific 

products in detectable quantity. (Figure 10.) 

 
Figure 10. 

The numbers represent the primers that can be found in 9.3 - “Sequences of PCR primers used in the 
PCR experiments” of the following genes: 

1, 2, 36: GJB2; 3, 4: 12SrRNA; 5, 6, 7: COCH; 8: GJA1; 9, 10: GJB3; 31, 32, 33, 34: MYO6; 37, 38, 39: 
GJB6; and 40: POU3F4. As these fragments were optimized for dHPLC 

experiments, their sizes are in the range 135–420 bp. 
Numbers on both sides represent the length of the PCR products, in bases, as a unit. 

4.3 Examination of the GJB2 gene 

Special attention was paid for the GJB2 gene, and its 35delG mutation. The highest number of 

nonsyndromic hearing losses is caused by various mutations in this gene. 2-3% of the 

Caucasian population is a carrier regarding the 35delG mutation, and various other mutations 

in this gene have been shown to cause ARNSL. 

4.3.1 35delG mutation 

All the 576 DBS, and 318 samples from peripheral blood samples were evaluated for the 

35delG mutation. These two groups were treated separately, as the samples on Guthrie cards 

can be considered as a randomized population sample, whereas the patients who came to our 

department because of various hearing problems cannot be treated a randomized group. On 

Guthrie cards 13 heterozygotes were found regarding the GJB2's 35delG mutation, which 

means that the carrier frequency is 2.3% in this population (Hungary)[39][62] (Table 3.A). No 

homozygotes were found, and that can be attributed to the fact that the incidence of the 

homozygous 35delG mutation is around 1/1000-2/1000 [39]. Three samples were found to 

belong to the same persons on blood spots and EDTA-anticoagulated blood samples. All three 

samples gave the same results when sequenced from whole blood and from DBS’es as well, 
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indicating that blood spots of several years of age may be a good source for GJB2 35delG 

AS-PCR tests. 

From the DNA extracted from peripheral blood, 24 subjects with homozygous recessive 

genotype, which takes 7,6% of the screened population, and 51 heterozygous patients out of 

the 318 (16,0%) were found. The total number of patients with homozygous wild genotype 

was 243 (76,4%) (Table 3.B). 11 cochlear implantees were homozygous for 35delG, and 5 CI 

users, or CI candidates were heterozygous (Table 3.C). All of the 35delG homozygous 

recessives’ relatives (who could be investigated) were heterozygous. 36 of the implantees, and 

78 of all the implantees’ relatives were homozygous wild out of the total of 318 patients. 

 

 Total 35delG +/- 35delG -/- 35delG +/+ 
A - Guthrie papers 
Persons 576 13 0 563 
Percent 100 2.3 0 97.7 
B - EDTA-anticoagulated blood 
Persons 318 51 24 243 
Percent 100 16.0 7.6 76.4 
C - CI users (from EDTA-anticoagulated blood) 
Persons 52 5 11 36 
Percent 100 9.6 21.2 69.2 

Table 3. 
Number and percent of 35delG mutations found in the DNA samples from the Guthrie cards (A), from the 

EDTA-anticoagulated blood (B), and among our CI users (C) 
 

4 subjects with combined alleles, two with 35delG+- /G71A+-, one with 35delG+-/ G139T+- 

E47STOP +-, and one with 35delG+-/G95A+- were found. 

All of the patients with the homozygous recessive 35delG genotype had a pure tone 

audiometry with 70dB or greater hearing loss. 8 of our CI users have the homozygous 

recessive 35delG genotype. 5 of the CI users are heterozygous 35delG carriers; one of them 

has a combined 35delG+- / G95A+- genotype. All their hearing levels were bellow 80 dB. 

4 CI users have at least one SNP in the other investigated genes, two of them having a 

35delG-- genotype with a MYO6 SNP (in DF33). These two patients’ audiograms show even 

more degraded hearing performance, their levels were bellow 90 dB, while 35delG-- - only 

patients have slightly higher hearing threshold levels, but still bellow 70dB. 
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Three out of the four patients who have two mutations in their GJB2 coding exon have no 

hearing problems. One of them has pure tone audiograms between -55 and -110 dB, but this 

latter patient has three SNPs in two other genes, in GJB3 (DF9 and DF11), and KCNQ4 

(DF17). 

For the summary of the found GJB2 35delG alleles and the hearing levels of all subjects, 

please see 10.1 “GJB2 35delG allele” in “10Appendix B– Summary tables of mutations” on 

page 70. 

4.3.2 Sequencing of the coding exon of the GJB2 gene 

Homozygous 35delG, heterozygous, and homozygous wild type samples were sequenced. 

All AS-PCR experiments gave consequent and reproducible results when gDNA was purified 

both from EDTA-anticoagulated blood and from dried blood spots (see Figure 9. on page 19).  

 

 
Figure 11. 

Three examples of a 35delG sequence. 
Wild: a sample of a patient with homozygous wild genotype 

35delG +/-: a sample of a patient with heterozygous 35delG genotype 
35delG -/-: a sample of a patient with homozygous recessive 35delG genotype 

Note that the 35delG mutation occurs in the 35th position, which is towards the left on the above pictures, 
as the sequence is shown backwards. 

 
As the PCR products of GJB2F and GJB2R were 809 bp long, the sequence analysis could 

cover the full length of the GJB2 gene’s coding exon on both strands (Figure 11.). 



 

 

23

 

The GJB2 gene was sequenced on all the venous blood samples (n=318). With the optimized 

reaction conditions, no false positive or false negative results were obtained.  

All sequencing chromatograms were clear and of good quality and readable up to at least 760 

bps (Figure 12.). 

 

 
Figure 12. 

An example of the whole sequence of the GJB2 coding exon. 
The picture above shows a homozygous wild genotype, for clarity reasons: as Figure 9 shows, a 

heterozygous sample would be hard to evaluate beyond the site of deletion. 
 

25 patients were found with various, but not 35delG-related mutations in the GJB2 gene. 

2 G109A +- (V37I+), 1 T269C+- (L90P+-), 2 G95A +- (R32H+-), 1 T101C+- (M34T +-), 

2 G380A -/- (R127H--), 7 G380A +- (R127H+-), 3 G71A +- (W24STOP+-), 2 G139T+- 

(E47STOP+-), 1 C164T+-, 1 G478A+-, 1 176 delG +-, 2 A341G +- (E114G +-) mutations 

were found. 
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One G109A+- occurred with an SNP in the GJB3 gene (DF9), with no audiological problems. 

One occurred without any other detectable genetic alteration, yet the patient has a cochlear 

implant, possibly the cause of an undetected mutation. 

The patient with the T269C/L90P has a CI as well, but no evidence was found of an other 

SNP in any of the other investigated regions. The patient’s hearing threshold level is bellow 

100dB. This can probably be attributed to yet another SNP somewhere else in the genome. 

One out of the two G95A+- carriers has a 35delG +- genotype too, as well as SNPs in GJB3 

and KCNQ4 (DF9, DF11, DF17). This patient has a CI, but since neither of the GJB2 

mutations are dominant, the hearing loss can be attributed either to the other SNPs that were 

found, or to another, undetected mutations in his or her genome. The other subject with 

G95A+- and 35delG+- has SNPs in GJB3, MYO6, and KCNQ4 (DF9, DF17, DF33), but has 

no detectable hearing problems. 

One patient with the T101C+- mutation has a severe hearing loss (between 60 and 90 dB), 

and no other detected mutation. 

9 patients have G380A/R127H mutation, two of them are homozygous, 6 of them are 

heterozygous, and one is a G380A -+/56insC compound heterozygote. One G380A-- and one 

G380A+- patient has developed profound hearing loss, the G380A -- deaf patient has an SNP 

in the KCNQ4 gene (DF48) too. 

One patient was found with a truncating mutation, G71A+-/W24STOP. That patient has 

hearing levels between 80 and 110 dB. 

5 patients are compound heterozygotes, 2 35delG+-/G71A+-, 2 A341G+-/E114G+-, and 1 

35delG+-/G139T+- E47STOP+-. The 2 35delG+-/G71A+- compound heterozygotes are 

siblings. One of them has an SNP in the GJB6 gene (DF12), and the 35delG+-/G139T+- 

E47STOP+- patient in the 12S rRNA. None of them has developed hearing problems. 

One subject has C164T+- as the only mutation, with no hearing problems. 

A 176delC+- patient has profound hearing loss, with no other SNP or mutation, and one CI 

user has a G478A+- genotype, and no other SNP or mutation. 

For the summary of the found GJB2 mutations (excluding 35delG) please see the table in 10.2 

“Other GJB2 mutations” on page 72. 
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4.3.3 dHPLC of the GJB2 gene 

The GJB2 gene was used as a “calibration test” for the dHPLC experiments that were done on 

other regions of other genes (DF3-DF48). This validation could be done, because all GJB2 

samples were sequenced and measured with dHPLC as well. 

No false positive or false negative results were found, all dHPLC chromatograms could be 

matched to the appropriate GJB2 mutation that was found with sequencing analysis. A few 

examples are shown in “12 Appendix D - Sample dHPLC chromatograms” - 12.1”GJB2 

(35delG) chromatograms” on page 83 on Figure 13, Figure 14, Figure 15, and Figure 16, 

respectively.  

4.4 Other examined genes 

All regions, DF1-DF49, (see the Table in 9.2 “Appendix A– Primers and sequences” for 

details), were analyzed with dHPLC. DF10 and DF15 could not be taken into account, 

because the data was lost due to computer error. These two primers are marked with red in the 

Table in 9.2 “Appendix A– Primers and sequences”. In this section the data concerning the 

GJB2 is excluded, as it has been discussed in detail in 4.3.”Examination of the GJB2 gene” 

131 dHPLC chromatograms show some form of variation, compared to other samples in their 

appropriate measurement series. In GJA1, and POU3F4 there was no evidence of any 

mutation, zero differing chromatograms were found in their investigated regions (0 in DF8 in 

GJA1, and in POU3F4’s 7 regions DF24-DF26 and DF40-DF43). 

29 SNP’s in the 12s rRNA (1 in DF3, and 28 in DF4), 6 in the COCH gene (0 in DF5 and 

DF7, 1 in DF49 and 5 in DF6), 32 in the GJB3 gene (0 in DF10, 19 in DF9, and 13 in DF11), 

5 in the GJB6 gene (0 in DF13, DF14, DF38, DF39, 3 in DF12, and 2 in DF37), 37 in the 

KCNQ4 gene (0 in DF15, and in DF47, 1 in DF16, 11 in DF17, and 25 in DF48), 2 in the 

SLC26A4 (0 in DF18, DF20, DF21, DF23, and in DF43-46, 1 in DF19, and 1 in DF22), and 

21 in MYO6 (all of them in DF33, we have found none in DF31, DF32, DF34) were found. 

These results are summarized in Table 4. 

Sum 12s rRNA COCH GJA1 GJB3 GJB6 KCNQ4 SLC26A4 POU3F4 MYO6 

131 29 6 0 32 5 37 2 0 21 
Table 4. 

The number of SNPs and the genes they were found in with dHPLC 
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These 131 SNPs were found in 98 patients. 

We have found 73 individuals with one SNP in the investigated regions (excluding the GJB2 

gene), 17 with two SNPs, and 8 with three SNPs. There were no patients with more than three 

SNPs in the screened regions. For the detailed summary, please see 10.3 thru 10.9 on pages 

73 to 77 in 10 “Appendix B– Summary tables of mutations”. 

Example dHPLC chromatograms of these experiments with audiograms of the respective 

patients are shown in 12.2 “Examples of dHPLC chromatograms from other genes, with 

audiograms”, from page 85. Figure 17. shows an SNP in the KCNQ4 gene, Figure 18. shows 

a chromatogram of an SNP in the 12s rRNA gene, in the DF4 region, Figure 19. shows an 

SNP in the cochlin gene in the DF6 region, and Figure 20. shows the chromatogram of an 

SNP in the GJB3 gene, in the DF9 region. 

22 of all the 98 subjects have at least one mutation in their GJB2 gene, 4 of them have the 

homozygous recessive 35delG genotype, and 18 are 35delG carriers (heterozygous). 10 of 

them have some other mutation in the GJB2 gene, 3 out of this ten are 35delG carriers as well. 

21 CI users have SNP is other genes than GJB2. Two of these 21 are 35delG homozygous 

recessive, one of them is a 35delG carrier, and one of them has a 35delG+- + G95A+- 

combined genotype. All the other CI users (n=17) have at least one SNP in the other 

examined genes. 7 of them have an SNP in the MYO 6 gene (DF 33), but there are patients 

who have SNP only their DF33 as well, have no hearing problem, but are close relatives of CI 

users. In case of 17 out of the 52 CI users, no mutation could be found, neither in the GJB2 

gene, nor any SNP in any of the other genes. Their hearing threshold levels (pre-implantation) 

show strong variation, from around -70dB to no hearing at all.  

In two cases out of the ten 35delG-- CI users, one SNP was found in the MYO6 gene (DF33). 

In six cases, no other mutation or SNP could be found but the 35delG homozygous recessive 

allele. Their (pre-implantation) pure tone audiometry hearing threshold levels vary between 

70dB to 120dB (no hearing at all). 

17 CI users have no GJB2-related mutation, but do have some other SNPs in some of their 

other genes. 14 of them have 1 SNP. 6 in MYO6 (DF33), 3 in the KCNQ4 (2 in DF17, 1 in 

DF48), 1 in the COCH gene (DF6), 1 in the GJB3 (DF9), 3 in 12s rRNA (DF4), and 1 in 

GJB6 (DF12). Their audiograms show some variation, between 70-90dB and 100-120dB. 
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4.5 Genetic findings of cochlear implant users 

In 19 cases no evidence of genetic alteration could be found in this group. In twelve cases out 

of the 52, the only mutation that was found in the patient’s genome is in the coding exon of 

GJB2 gene (Table 5.) 

Mutation # of patients
35delG --only 6 
35delG-+ only 2 
T269C+- L90P 1 
G109A +- V37I 1 

G380A +- R127H 1 
G 478 A+- 1 

Table 5. 
This table shows the number of CI user patients and the mutations in the coding exon of the GJB2 gene 

 

In 21 cases a broad diversity of SNP were found. In four cases with some SNP in the GJB2 

gene, in one case even with two SNPs in the exon. 17 patients have only one SNP in one gene 

that’s no GJB2, 2 patients have two SNPs in two different genes, and one patient has 3 SNP in 

three genes. For details see Table 6. 

Patient nr. 1 2 3 4 5 6 7 
GJB2 

Mutation 
35 delG -

-    
35 delG 

--   
dHPLC 
primer DF33 DF33 DF9,DF11,DF33 DF9,DF33 DF33 DF33 DF9,DF17 

Gene MYO6 MYO6 
12srRNA, GJB3, 

MYO6 
12srRNA, 

MYO6 MYO6 MYO6 
12srRNA, 
KCNQ4 

Patient nr. 8 9 10 11 12 13 14 
GJB2 

Mutation    35 delG+-     
dHPLC 
primer DF17 DF17 DF6 DF9 DF33 DF9 DF48 
Gene KCNQ4 KCNQ4 COCH GJB3 MYO6 GJB3 KCNQ4 

Patient nr. 15 16 17 18 19 20 21 
GJB2 

Mutation   35 delG+-/ G95A-     
dHPLC 
primer DF33 DF33 DF9, DF11, DF17 DF4 DF4 DF12 DF4 

Gene MYO6 MYO6 
KCNQ4, GJB3, 

KCNQ4 12srRNA 12srRNA GJB6 12srRNA 
Table 6. 

Detailed table showing the localization of the SNPs found in CI users, where other gene was, or other 
genes were involved than the GJB2 gene. 

 

Note, that a more detailed table can be found with the above data on page 78 in 10.10 

“Cochlear implant users” 
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4.6 Audiograms 

538 audiograms from 119 patients were collected during our work. No audiogram was taken 

from relatives, who stated that they did not have hearing problems. There were a few relatives 

who refused to participate in audiology testing, but they all stated that they do not have 

hearing problems. 

52 cochlear implant users were in our group, all of them had hearing threshold levels bellow 

80 dB (which is one criterion for the cochlear implantation also). All the GJB2 35delG 

homozygous recessive patients had hearing levels bellow 70dB, with the exception of one 

subject. This exception contradicts our knowledge of the 35delG mutation, and may represent 

an error, as that mutation in its homozygous form is known to cause severe hearing loss, and 

no other mutation (that could possibly restore the function of Cx26) has been found in this 

case. 

Audiograms from 67 other people were collected. 11 of these patients have hearing threshold 

levels between 0 and 20 dB. 4 of them have hearing threshold levels between 20-30 dB, 14 of 

them between 30-70 dB, 15 of them between 70-90 dB. Finally, 21 of them had hearing 

threshold levels bellow 90dB, or no hearing at all. See Table 7. for the summary of these data. 
 

Hearing threshold level (dB) >20 20-30 30-70 70-90 90< 
Number of patients 11 4 14 15 23 

Table 7. 
Summary of the hearing threshold levels in our group of patients 

-10-20 dB: normal hearing range 
20-30 dB: mild hearing loss 

30-70 dB: moderate hearing loss 
70-90 dB: severe hearing loss 

90< dB: profound hearing loss 
 
Out of this 119, 40 subjects have only 1 audiogram, 63 have between 2 and 10, 10 have 

between 10 and 20, and 6 people have more than 20 audiograms. Those who had the most 

audiograms were CI users, whose CI device was regularly fitted, and checked with pure tone 

audiometry. 

Because of the relatively high number of variations among the audiograms, it was not 

possible to calculate averages or significance. 

Follow-up could not be done, because of the high variability of mutations, and the low 

number of patients who had more audiograms. 
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5 Discussion 

5.1 Properties of DNA purified from Guthrie cards 

Different blood storage methods were tested if they can provide appropriate DNA samples for 

AS-PCR tests and for sequencing of the GJB2 gene. DNA was obtained from EDTA-

anticoagulated venous blood, and from dried blood spots. The possibility of the use of dried 

blood spots on Guthrie cards as a source of DNA for genetic testing after an extended period 

of storage under suboptimal conditions was evaluated. 

According to our experiments, both DNA sources gave satisfactory results. The usability of 

the PCR products from either template is equal when used in AS-PCR experiments, or in 

sequencing. Previous works have shown that extracting DNA or RNA is possible from 

DBS’es [55][56], but none have evaluated the effect of storage conditions. 

AS-PCR primers were validated on samples that contain the 35delG mutation in the GJB2 

gene’s coding exon. All the DBS samples with the 35delG allele were sequenced and all 

sequences certified the AS-PCR results. Whole GJB2 gene sequences of samples resulted in 

wild type signals with AS-PCR proved that the AS-PCR experiments did not give false 

negative results. 

Three samples were found on blood spots in the randomized group that belonged to our 

patients from whom we drew blood in EDTA-anticoagulated tubes. The samples were 

analyzed both with AS-PCR and with sequencing, and these two methods showed the same 

results, not only on these three, but also on all that were compared using the two approaches. 

All six experiments, however (AS-PCR and sequencing on all three corresponding DBS and 

whole-blood samples), showed the respective, matching results as well. Although more 

experiments using the same patient’s whole blood and DBS would have been more desirable, 

mainly due to financial and organizational reasons, this could not be achieved. 

These results support that our AS-PCR test is suitable for large-scale screening of dried blood 

spots as well as for simple and cost-effective detection of selected – and not only, or 

necessarily GJB2-related – point mutations on individuals or in family samples. 



 

 

30

 

Because of the reliability of these methods, it is possible to screen for larger genes, or to 

screen for multiple SNPs in the same, or even in more genes simultaneously. By multiplexing 

the PCR primers, more point mutations can be addressed in one, quick and cheap experiment. 

The costs of traveling this amount of people to hospitals, or university hospitals, just to draw 

blood are enormous. With DBS’es, the costs can be cut down. Blood can be drawn by their 

physician, and blood transport do not need to take place in a controlled manner, the 

temperature for transportation and the time it takes to transport the anticoagulated blood to the 

screening centers is of no consideration anymore. 

On the other hand, if the need arises to carry out further genetic testing, the DNA, which can 

be extracted from a DBS, is enough to carry out hundreds or even more than a thousand PCR 

experiments. In fact very little amount of genomic DNA solution is needed to carry out a 

successful PCR. Whole blood cannot be stored long until it noticeably degrades, and the costs 

of storing the gDNA solution from peripheral blood (buying, or maintaining a refrigerator for 

example), and the laboratory room consumed by the needed equipment cannot be compared to 

the storage demands of the dried blood spots. With the methods presented, dried blood spots 

can not only be used to test for metabolic diseases but to carry out genetic experiments as 

well. 

As calculated by our lab we can get enough gDNA for a few hundreds of PCR runs from 

about 2/3 of the money if working with DBS, than needed to do the same number of 

experiments with EDTA-anticoagulated whole blood, and this is only the financial calculation 

that concerns the acquisition and the maintenance of the equipment. In addition, it requires 

less time, as the purification of 96 samples takes an hour with the previously described 

method from DBS, but almost a whole day with whole blood, even using a good kit. 

Significantly more work can be done in a given time frame when gDNA is extracted from 

dried blood spots. Purifying gDNA from DBS'es is more simple, requires less work and lab 

equipment, and the gDNA's quality – based on the PCR experiments described in this work – 

is on par with the gDNA solution that can be extracted from the EDTA-anticoagulated blood. 

Beyond all these advantages, AS-PCR is a cost effective, precise, and quick tool that can help 

us to screen newborns for specific alleles. 

It was estimated, that there are around 800-1000 people in a Hungary-sized country per year 

who may need cochlear implantation. The number of severe or profound hearing losses is 
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even higher, around 1-2% in the European population. Ideally about 100 000 subjects should 

be screened for the background of their hearing losses. Considering this high number of 

potential hearing screens, the DBS method has an enormous advantage over any other 

previous method used, both in the technical and in the financial sense. It also has the 

advantage that a lot of samples are already available in the Guthrie paper banks at selected 

institutions in the country, so population-wide screening is – at least theoretically – possible. 

5.2 Examination of the GJB2 gene 

5.2.1 35delG mutation 

Carrier rates of mutations that cause nonsyndromic deafness show strong variation according 

to the literature. The frequency of some of these mutations is not even known, as they are 

only analyzed on one or two families [63]. Some of these mutations are researched in more 

detail, and their carrier rates are known [63] According to some researchers the 35delG 

mutation is the single most responsible mutation for nonsyndromic hearing losses in the 

European population [64]. Still, if not the single cause for most of the nonsyndromic hearing 

losses, this is one of the leading causes for autosomal recessive nonsyndromic hearing losses 

(ARNSLs) [63]. Our findings indicate that in the Hungarian population the carrier frequency 

of the 35delG mutation is around 2.3%, as we have found 13 heterozygotes on Guthrie cards. 

Our results are similar to that of Tóth et al., they carried out their work in a population in 

Northern Hungary [62]. It seems that geographic (and hence minor ethnic) differences do not 

play an important role in the distribution of the 35delG alleles in Hungary, because our 

randomized samples came mostly from the Southern-, and Southeastern parts of the country. 

The incidence of the homozygous 35delG mutation is roughly 1/1000 to 1/2000, the carrier 

rates are in the range of 1-3% [36][39][65] and, as expected, no 35delG homozygous patients 

were found in the randomized group. 

According to the literature, far more 35delG alleles are found amongst CI users than in the 

normal population, but the genetic background of hearing loss does not seem to make any 

difference in the success of the later rehabilitation, according to Coletti et al. and Fischer et al. 

[66][67]. Green et al. – on the contrary – found that cochlear implant recipients with GJB2-

related deafness have greater improvement with cochlear implant, than subjects with 
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congenital deafness with other root cause and non-cochlear implant recipients [69]. Speech 

development, however, can be normal, or close to normal, when the child is fitted with 

cochlear implant in the early ages. As a consequence, the procedure for the selection of a 

Cochlear implantation must be carried out in the very early years of life – ideally between 

1,5-3 years, or even earlier if possible [68]. 

In the cochlear implanted population, 8 patients were found with homozygous 35delG 

genotype. Five cochlear implantees were heterozygous for 35delG. All of the 11 homozygous 

recessives’ relatives (who could be investigated) were heterozygous. 28 of the implantees, and 

78 of all the implantees’ relatives were homozygous wild out of the total of 318 patients. 

Only 12 of all the 35delG allele carriers have CI, and even less, 8 of them have homozygous 

recessive 35delG genotype. These numbers indicate that screening for only the 35delG 

mutation is not always sufficient. 

5.2.2 Sequencing of the coding exon of the GJB2 gene 

Numerous GJB2 mutations have been described in the literature until now, but because of 

their very low abundance, only a few could be studied in detail. Their inheritance and the 

hearing loss they may cause are not known in all cases. 

The non-35delG mutations found in the coding exon of the GJB2 gene in our cohort of 

patients are summarized in Table 8. 

Number of 
GJB2 
mutations  

Percent of 
GJB2 
mutations  G109A +- V37I 

T269C+- 
L90P 

G95A-+ 
R32H +- 

T101C-+ 
M34T +- 

G380A -- 
R127H 

G380A +- 
R127H 

15  2 1 2 1 2 7 
 5.66 0,63 0,31 0,63 0,31 0,63 2,20

 
G71A +- 
W24STOP 

G139T+-
E47STOP +- C164T+- G478 A+- 176delG +- 

A341G+- 
E114G+- 

10  3 2 1 1 1 2
 3.14 0,94 0,63 0,31 0,31 0,31 0,63

25 7.86 
Total = 

318 100 
Table 8  

This table summarizes the non-35delG mutations found in the GJB2 gene 
Please note that due to space constraints the table’s first row is continued in the fourth row, the second in 

the fifth, and the third in the sixth, respectively  
 
By sequencing the complete coding exon of the GJB2 gene, 12 other mutations have been 

found in this group, four of them together with a 35delG allele. 
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Two of them were homozygous, and even that one – the G380A – is a non-truncating 

mutation. It has been shown, however, that this mutation can render the Connexin 26 

unsuitable for forming functional gap junctions between the cells [70]. This may make us 

cautious about this mutation. On the other hand, Thönissen et al. [71] and Roux et al. [72] 

concluded that this mutation might not have any impact on the hearing. Dahl et al. found a 

proband that had a homozygous recessive form G380A, and had no hearing loss; they 

concluded too, that the G380A in its homozygous form does not cause nonsyndromic hearing 

loss [10][73]. Interestingly, our data show that these two homozygotes are in a parent-child 

relationship, and one sibling, and one parent is heterozygous, yet they have normal hearing.  

Apart from this family, 5 other patients have the G380A +- genotype, one of them has a 

cochlear implant device. The CI user has no other mutation in the GJB2 gene, nor was found 

any other SNP in any other examined regions. The other four R127H patients have not 

developed hearing loss. 

Only sporadic occurrences have been found of other non-35delG GJB2 mutations. None of 

them were in their homozygous forms. 

Three of these carriers, 1 T269C +- (L90P+-), 1 G109A+- (V37I+-), and 1 G478A+-, have 

cochlear implants, but this can also be a consequence of other, undetected mutations. 

The L90P transition (leucine to proline at the 90th position) was first described by Murgia, et 

al. as a polymorphism in 1999 [73]. According to the opinion of Loffer et al. from 2001 [75], 

this mutation is a recessive mutation, that only causes hearing loss in its homozygous form. 

Janecke et al., suggested that L90P, with some other recessive GJB2 mutation, causes only 

mild to moderate hearing loss [76]. In our case, the hearing loss is more severe, and this may 

indicate more things. Firstly, descriptions so far may have been wrong. In our case, no other 

mutation either in the GJB2 gene or in any other examined region could be found. Secondly, 

the genetic background of the hearing remains hidden in other genomic regions that fell 

outside of the scope of this work. 

V37I has been described as a polymorphism from a control group by Kelley et al. in 1998 

[77]. Bason et al. described the first homozygous V37I allele in GJB2 [78]. Dahl et al. [73] 

and Huculak et al. [79] both found that V7I in its homozygous form causes only slight to mild 

degree of hearing loss. All these findings indicate that our patients may have yet an other 

genetic background for their profound hearing loss. 



 

 

34

 

For the G478A (G160S) change there is only one report to date. Guo et al. described this 

change as a polymorphism in a large Chinese population [80]. No other reports could be 

found about this alteration. 

Two G95A (R32H) +- heterozygous patients were found. The first report of this mutation 

comes from Mustapha et al. [81]. Only a few reports are available concerning this SNP, and 

none of them describes the phenomenology, or the change in hearing it may cause. See the 

reports of Mahdieh [82] and Feldmann [83] as examples. Santos et al. identified this mutation 

as a possibly damaging mutation due to the change of polarity in the transmembrane region of 

the connexin 26 protein [84]. 

T101C (M34T) was described by Kelsell et al. as a possible autosomal dominant hearing loss 

causing allele [35]. They described a family where this was the only mutation in the GJB2 

gene. The reported family has dermatological problems. Scott et al. found, however, that in 

fact this may not be true [85]. They described a family, where they found this allele, but none 

of the family members developed hearing loss. In our single case, nobody in this family has 

dermatological problems, and there was not found any other mutation neither in the coding 

exon of the GJB2 gene, nor in any of the other genes or regions that were examined during 

our experiments. Our patient has a severe hearing loss with hearing levels between 65 and 90 

dB. The cause of the hearing remains loss is unclear in this case. 

3 G71A +- (W24STOP) mutations were found. Two individuals are 35delG+- / G71A 

compound heterozygotes, with no hearing loss. One patient has hearing levels between 40 and 

70 dB on one ear, and between 80 and 110 dB on the other ear. This latter patient has an SNP 

in KCNQ4 as well (in DF48). These data may indicate that the hearing loss is not caused by 

the W24STOP mutation. Although it is a truncating mutation, it seemingly does not cause 

problems in its heterozygous form. Unfortunately, no homozygous form of this mutation 

could be found. This base change was first described by Kelsell et al. in 1997 [35]. W24STOP 

is the predominating DFNB1 allele in India [86][87]. Interestingly, the only W24STOP 

patient found is a gipsy and it has been reported several times that this amino acid change is 

more frequent amongst romanis. Both Minárik et al. in Slovakian a population in 2003 [88], 

and in 2005 Alvarez et al. in a Spanish population [89] reported this. They both concluded 

that this high frequency in those populations might be a consequence of a founder effect. 
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G139T+- or E47STOP has been first described by Denoyelle et al. in 1997 [90]. As this is a 

rare allele, it has only been described a few times. (see [91] and [92] and [93] as examples). 

Ben Arab et al. described this mutation in Tunisia but they did not provide audiological 

details [94]. Samanich et al. found a homozygous E47STOP proband, and they concluded that 

in this form this truncating mutation causes autosomal recessive hearing loss [95]. One of our 

patients is a 35delG+- / G139T+- compound heterozygote with an SNP in the 12s rRNA gene 

(DF4), the other one has this mutation only. None of them has any hearing problems. 

One C164T allele was found, that has not been described so far. This is a novel 

polymorphism. This patient has no hearing problems, and has no other mutations in the other 

examined regions. No other family member has this mutation. 

One patient with 176 delG +- has been found with significant hearing loss (between 65 and 

110 dB) on all frequencies. This mutation has not been described so far. C176G was 

described by Heathcote et al. in 2000 that causes palmoplantar keratoderma [96]. They 

concluded that the transition would disrupt one of the extracellular loops in the Gap Junction 

Beta 2 protein, and hence dysfunctional connexins form. By deleting one G from the “GGC” 

triplet, the reading frame is shifted and it becomes “GCU”, and glycine becomes alanine. 

Considering the chemical structures of the two amino acids, this mutation, even in its 

homozygous form, may be a function-preserving mutation. It is not sure, however, that this 

mutation in its heterozygous form causes the hearing problem of our patient. 

Neither of the two A341G+- (E114G +-) patients has hearing loss. One of them has an SNP in 

the GJB6 gene, in the DF12 region. Pandya et al. in 2001 described a G79A + A341G (valine 

at 27 into isoleucyne and glutamine at 114 into glicyne) compound heterozygote. Fuse et al. 

found more patients with both homozygous and heterozygous forms of this mutation, with 

and without hearing problems [97]. Kudo et al. described the allele frequency of this mutation 

in a Japanese population, but gave no data on the mutation’s impact on hearing [98]. Park and 

co-workers found numerous homo- and heterozygotes with A341G mutation, their hearing 

loss varied from profound hearing loss to no hearing loss at all. They found this mutation in 

the control group as well. They concluded that although it is possible that this mutation causes 

anomalies in the function of the GJB2 protein - because this base transition substitutes glycine 

for glutamate in the cytoplasmic loop area of the polypeptide -, their data do not support this 

relationship clearly [99]. Choung et al., however, stated that wild type and E114G mutant 
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transfected cells show the same Cx26 immunohistochemical properties, and that might imply 

normal GJB2 protein function [100]. Our data is not sufficient to support either hypotheses. 

 

No insertions in size bigger than one base, or deletions in size bigger than one base have been 

found in our population. 

5.2.3 dHPLC of the GJB2 gene 

Lin et al. in 2001 reported 100% sensitivity and specificity with this method in 154 patients 

[101]. Although the method itself is reliable and it is possible to screen with the help of it 

several hundred samples per day, it has not been widely adopted by the genetic hearing loss 

research community. 

5.3 Mutation detection in other examined genes 

No SNPs in the GJA1 gene (primer DF8), and in the POU3F4 transcription factor (primers 

DF24, DF25, DF26, DF40, DF41, DF42, DF43) were found. This may indicate that mutations 

in these genes are very rare in the Hungarian population. 

5.3.1  12S rRNA 

A relatively high number of SNPs were found in various regions of this gene. While there was 

only one SNP in DF3, DF4 contained 28 SNPs. 

This gene – also known as MTRNR1 - is responsible for the coding of the 12s rRNA in the 

nucleus of the cell. It has been described in 1993 that its A1555G mutation makes an 

individual highly sensitive to aminoglycoside type of antibiotics, and hence related deafness 

[102]. This number of SNPs in this gene should make us cautious about utilizing possibly 

ototoxic drugs. There are only 2 patients where there were no other genetic alterations found, 

yet they both have cochlear implants. It is possible that there are ototoxic reasons in the 

background of their hearing loss. Administering antibiotics in relatively low doses can lead to 

hearing problems in case of these individuals. Although the problem may be prominent, only 

little is known about the amount of antibiotics that cause deafness in genetically sensitivised 

patients. Guan et al. investigated the effects of different concentrations of paromomycin on 

lymphoblastoid cells derived from the members of a family with A1555G-mutation and 
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deafness, and compared them with normal cells [103]. Their work, however, is hard to apply 

in clinical circumstances, as they carried out in vitro experiments. 

5.3.2 COCH 

5 SNPs were found in the COCH gene, 4 in DF6, and 1 in DF49. 

In 2 cases, the only detectable genetic alteration was in the cochlin gene, and only one of the 

two patients had profound hearing loss. This patient also has a cochlear implant. The other 

patient with the detected SNP does not have any hearing problem, but is the mother of the 

male cochlear implanted child. No mutation could be detected in case of the father or the 

sibling of the mentioned CI user. According to the literature, mutations found so far in the 

COCH gene are mostly autosomal dominant (DFNA9). The first description of these is that of 

Manolis et al. from 1996 [104]. 

Our finding, however, may indicate a presence of an X-linked mutation. 

A GJB2 G380A+- / COCH compound heterozygote was also found, without detectable 

hearing loss. According to our findings in 5.2.2 “Sequencing of the coding exon of the GJB2 

gene”, the G380A mutation is an autosomal recessive mutation, and if the SNP in this case in 

the COCH is “silent” then this compound heterozygote may not develop hearing loss. 

An other patient with GJB2 35delG+- / COCH / GJB6 triple mutation was also found with 

severe (around 50 dB) hearing loss. In this case, it is nearly impossible to tell which of the 

found genetic alterations causes the hearing loss. 35delG is an autosomal recessive mutation, 

COCH [104] had been described to cause autosomal dominant nonsyndromic hearing losses, 

but the role of GJB6 is not clear; DFNB1 [105] and DFNA3 [10] both have been mapped to 

this gene. DFNB1 was mapped to Connexin 26 as well [35]. 

There is a female, who has SNPs in the SLC26A4, 12S rRNA and in the COCH gene as well, 

with mild-to severe hearing loss, an audiogram between -25 and -60 dB. Her brother has 

hearing problems too, with SNPs in the GJB3 and 12S rRNA, but with more severe hearing 

loss (between 50 and 80dB). It is known from their family history that they were not 

administered ototoxic drugs, although the only common genetic variance seems to support 

this idea. Multiple mutation sites have been described in the MTRNR1 gene, but all, except 

the A1555G transition are outside of our primer DF3. Our findings might indicate the 
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possibility that there may be aminoglycoside-deafness sensitizing “hot spots” in other regions 

of the gene as well. 

5.3.3 GJB3 

In 7 out of the 27 cases, an SNP in the GJB3 gene was the only genetic alteration found. 9 

subjects have point mutations in their GJB2 gene, 6 35delG+-, 1 35delG+-/G95A+-, 1 G95A, 

and 1 G109A have been found. None of them developed hearing problems. 

12 of the 27 patients have some degree of hearing loss, and all of their hearing levels are 

bellow 40 dB. Four of them have mutation only in the GJB3 gene, all the others have SNPs in 

one of the COCH, KCNQ4, 12s rRNA, or in the MYO6 genes. 

Mutations in GJB3 were described to cause dermal diseases [106], or – in a few cases – 

hearing loss was associated with tinnitus [8], and had an impact on the high frequencies [8]. 

More marked decrease in the hearing level of the subjects was found by 

Lopez-Bigas et al. [7], where they assumed nerve myelination problems. 

5.3.4 GJB6 

5 patients have SNPs in the GJB6 gene, 2 in DF37 and 3 in DF12. One of them is a CI user 

and this, the SNP is his or her DF12, is the only genetic alteration that could be found. 

Two subjects have mutations in their GJB2, one 35delG+-, and one A341G+-, but neither 

them, nor the other two patients have hearing loss. 

Because of the controversial data on GJB6 (see for example [10][35][105]), and the relatively 

low number of SNPs in this gene amongst our patients, it is hard to tell what impact these 

SNPs may have on the hearing of our subjects. 

5.3.5 KCNQ4 

DFNA2 is known to map here [10][24][73]. According to current knowledge, no autosomal 

recessive hearing loss causing allele has been described in gene. 

Out of the 35 patients who have at least one SNP in this gene, ten have developed severe to 

profound hearing loss. Five of them are CI users, and only one of them has a 35delG+- 

genotype besides the SNP in KCNQ4. Three of these hard-of-hearing personnel have a GJB2 
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mutation that can account for their hearing problem, one with 35delG--, one with G71A 

(W24STOP, a truncating mutation as well), and one with G380A-- (R127H). 

The data for this latter patient seems to conflict with the opinion of Thönissen et al. [71] and 

Roux et al. [72] as they have identified this mutation as a “silent mutation”, or a 

polymorphism. This issue has been discussed in more detail in 5.2.2 “Sequencing of the 

coding exon of the GJB2 gene”. 

Five patients have hearing levels bellow 70 dB, and four of them have an SNP in the GJB3 

gene too. Taking into account that mutations so far described in both GJB3 and KCNQ4 are 

mostly dominant [3], their hearing problems may be related to mutations in both genes. 

5.3.6 SLC26A4 

Only two SNPs were found in two patients in this gene. One of them has no hearing related 

problems at all, and has this SNP as the only genetic alteration in the studied genes and 

regions. 

The other patient has SNPs in the 12s rRNA and the COCH gene as well, and has mild-to-

severe hearing loss on both ears. The patient’s hearing problem may be related to the SNP in 

the 12s rRNA, as her sibling has some severe-to-profound hearing loss on both ears, and three 

SNPs, in which only the 12s rRNA is common. 

5.3.7 MYO6 

Myosin VI is one of the unconventional myosins, and plays a role in the intracellular vesicle 

and organelle transport [107], and in the maturation of the IHCs [15][16]. Both autosomal 

dominant [17] and autosomal recessive [18] nonsyndromic hearing loss-causing loci have 

been identified in this gene. 

21 SNPs were found in 21 patients. In 8 cases out of the of the 21, MYO6 contained the only 

genetic alteration in those parts of the genome that was studied. 5 of them have a cochlear 

implant, and these patients do not have any other mutation in any other studied genetic region. 

One child’s mother has an SNP in MYO6 as well, but she does not have hearing problems. 

These findings may indicate the presence of a nonsyndromic dominant hearing loss causing 

mutation in these patients. 
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Two CI users are homozygous 35delG recessives, and have an SNP in the MYO6 gene, but 

this SNP is most likely “silent” as their hearing threshold levels are around the same as that of 

other CI users’. 

Four of these patients are 35delG carriers, and have an SNP in MYO6, but they all have 

normal hearing. 

Two of the CI users in this group have SNPs in both GJB3, and MYO6. Neither of them has 

any other mutation in the studied regions. No simultaneous occurrences of mutations in these 

genes were described before, so this issue might need some further investigation. One of them 

had only residual hearing, and one of them had a pure tone threshold level bellow 100 dB 

before the cochlear implantation. 

A patient with severe hearing loss (hearing threshold levels between 55 and 90dB, with lower 

thresholds on the middle frequencies) has SNPs in three genes, in 12srRNA, GJB3, MYO6. 

Again, this combination is not studied in enough detail to able to judge the cause of the 

hearing loss. 

5.4 Cochlear implant users 

19 out of the 52 cochlear implant users have no mutation in neither of the genes and regions 

studied in our present work. This is a relatively high number, 36.5% of all the CI users 

amongst our patients. On the other hand, our cohort was selected so, that their cause of 

hearing loss was unknown. By systematic checking, some genetic background could be found 

in almost two-third of these cases. 

In 17 cases SNPs were found in one gene, and more genes in four cases out of this 17, that is 

not GJB2-related. 

In 12 cases, there was a mutation in the GJB2 gene only. 

These 52 CI users took approximately one-fourth of our CI users at the time the work was in 

progress. The above numbers suggest that genetic tests should be made during the 

examinations that forego the implantation procedure, as a large percent of hearing-related 

problems may be caused by genetic defects. In selected patients (and possibly their families) 

who have some kind of serious hearing problem (so that cochlear implantation comes into 

question), the likelihood of such genetic defects is much higher than in the normal population. 

The 35delG allele was only found in several cases in the “general” Hungarian population, the 
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carrier rate is approximately 2.2%, but this allele showed a much higher frequency in the 

other group, 99/318, around ~31%. If similar or even lower ratios in cases of other genes are 

assumed, then the amount of possible mutations is still very high. 

In Hungary, there is a Cochlear Implantation program ongoing. As the Hungarian social 

insurance finances only a limited amount of cochlear implants per year per institute, the 

requisites for getting a device must be set very strictly. As quite a few of our cochlear implant 

users and aspirants have a hearing problem of unknown origin (85 out of 204 as of December 

2008), genetic testing can be a tool that can help in making a more thorough decision. 

Because of some financial constraints - the device is expensive - there exists a waiting list as 

well. If there is a genetic background in case of a CI candidate, the odds are better to get 

sooner on that list, as autosomal recessive nonsyndromic hearing loss is an indicative factor 

for an implant. The child can be implanted earlier, and so its chances are better to learn, to 

hear, to talk, and to communicate. 

Speech development can be normal, or close to normal, when the child is fitted with cochlear 

implant in the early ages. As a consequence, the procedure of the selection for a cochlear 

implantation must be carried out in the very early years of life – ideally between 1,5-3 years, 

or even earlier if possible [68]. As the objective audiological measurements are very hard to 

carry out properly at this age, genetic testing plays an even more important role. The use of 

dried blood spots (DBS) makes this task much easier, because if the DBS bank is correctly 

maintained there will almost surely be a sample from the given patient. In this case, the 

genetic testing can be carried out without having to bring a child to the hospital, and draw 

blood from her or him, which is a painful and inconvenient or uneasy procedure, sometimes 

even for the doctor too. 

About 1/4th of our country belongs to our department and that takes nearly 2 million people. 

According to statistics, there are around 800-1000 people per 10 million inhabitants per year 

who need cochlear implantation, and the number of severe or profound hearing losses is 

higher, between 1-2% in the European population. That takes 100 000 - 200 000 subjects who 

ideally should be screened for the background of their hearing losses, just based on the 

severity, because this could make them a potential CI receiver. These are estimates based on 

our daily work, and our own experiences with patients. Others suggested somewhat lower 

numbers [57]. 
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The costs of traveling this amount of people to hospitals, or university hospitals, just to draw 

blood are enormous. With DBS’es, the costs are considerably lower. Blood can be drawn by 

their physician, and blood transport do not need to take place in a controlled manner i.e. 

temperature and the time it takes to transport the anticoagulated blood to the screening centers 

is of no consideration anymore. 
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6 Summary 
I. We examined three methods to extract DNA from dried blood spots, and tested the 

obtained DNA. We showed that with a relatively simple procedure (by boiling the DBS’es 

in water) it is possible to extract DNA that is suitable for genetic testing. It is possible to 

extract DNA from 96 tubes (this number depends on the capacity of the thermal cycler) in 

around half an hour. In contrast, this costs significantly more with the use of DNA 

purifying kits (from EDTA-anticoagulated blood), and takes about 5-6 hours of lab work. 

[II] 

 

II. During our examinations, we showed that DNA remains usable for both SNP detection 

(AS-PCR), and sequencing for at least ten years, even when stored under rogue 

conditions. We could sequence the whole coding exon of the GJB2 gene from DNA that 

was purified with the methods we applied. [II] 

 

III. We have shown that from one piece of Guthrie paper (3-4 drops of blood) we can get 

DNA solution that is enough for hundreds, or even thousands of PCR experiments. Taking 

this into account, even some larger genes can be sequenced if needed. [II] 

 

IV. It was shown that in the population we examined, that consists of samples from South- 

and Southeastern Hungary, the 35delG mutation in the GJB2 gene is found in about the 

same percent as others have described in the Caucasian population. Amongst patients 

whose origin of hearing loss was unknown the 35delG is found much more frequently, the 

risk of having such a mutation is almost 15 times higher than in the normal hearing 

population, 2.2% versus ~31 %. [III, I] 

 

V. We have found numerous other mutations in the GJB2 gene in our population of 

patients. C164T and 176delG have not been described so far. 176delG may even be a 

novel autosomal dominant nonsyndromic hearing loss causing mutation. C164T is most 

likely a polymorphism. None of the other mutations hasve been studied in more detail 
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together with the regions of other genes in the Hungarian population until this work. 

[submitted] 

 

VI. 29 patients out of the 318 who have some level of hearing loss have possibly other 

causes for their problems than a mutation in the GJB2 gene. This is almost 11% of this 

population.  

 97 SNPs were found in the studied genes and regions of these 318 people. 17 with 

SNPs in two regions, in two cases in the same gene, and in 8 cases with three SNPs, in 5 

cases two of the three SNPs were found in different primers within the same gene. 

[submitted] 

 

VII. Numerous SNPs were found, but we lack family data to be able to precisely map the 

affected gene and locus, and to be able to precisely follow the audiological traits between 

the relatives. Most genetic examinations are done on families, where extended kinships 

exist, mostly out of cultural conventions. In Hungary (in the European/Western countries 

in general), it is hard to achieve this. On the other hand, after having reviewed the 

literature, certain mutations are typical to different human races and geographic regions, 

and thus genetic data originating from different parts of the world may not be appropriate 

in certain populations. [submitted] 

 

VIII. Based on our data it is only possible to reliably predict the possible level of hearing 

loss, in case of a few, well studied, and standalone (or few-gene, or few-locus) 

nonsyndromic hearing loss-causing mutations. As the frequency of these mutations is very 

low, we would need a nation-wide screening program to achieve this goal. [submitted] 

 

IX. The pre-selection examinations for cochlear implantation should include genetic 

testing, and not even on one gene. Although at present state it is not possible to deduce the 

level of hearing loss based only on the genetic background of the patient, the relatively 

high number of mutations we found indicates that, that in fact more hearing losses may be 

attributed to various genetic backgrounds in Hungary than we thought earlier. [submitted] 
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9 Appendix A– Primers and sequences 

9.1 A concise table on the involved genes, regions, and their 
related publications 

GENE 
LOCUS or 
SYNDROME 

AMINO ACID 
CHANGE 

NUCLEOTIDE 
CHANGE EXON 

ETHNICITY 
(Number of 
families) REFERENCES

COCH DFNA9  P51S 207C>T exon 4 
Belgian (1), Dutch 
(2) Fransen 1999 

    V66G 253T>G exon 4 American (1) Robertson 1998 
    G88E 319G>A exon 5 American (1) Robertson 1998 
    I109N 382T>A exon 5 Australian (1) Kamarinos 2001 
    

W117R 405T>C exon 5 American (1) Robertson 1998 

GJA1 
Recessive Hearing 
Loss L11F 30C>T exon 

African American 
(3) Liu 2001 

    V24A 71T>C exon 
African American 
(1) Liu 2001 

  
Heart 
Malformations T326A     N/A (1) 

Britz-Cunningham 
1995 

    F335Q     N/A (1) 
Britz-Cunningham 
1995 

    S373G A>G   N/A (1) 
Britz-Cunningham 
1995 

    E352G A>G   N/A (2) 
Britz-Cunningham 
1995 

    S364P T>C   N/A (5) 
Britz-Cunningham 
1995 

    S365N G>A   N/A (1) 
Britz-Cunningham 
1995 

GJB3 DFNA2 R180X 538C>T   Chinese (1) Xia 1998 

    E183K 547G>A    Chinese (1) Xia 1998 

  
Recessive 
Deafness 141delI 423delATT   Chinese (2) Liu 2000 

    I141V 423A>G   Chinese (2) Liu 2000 

  

Neuropathy and 
Hearing 
Impairment R32W 1227C>T exon 2 Spanish (1) Lopez-Bigas 2001*

      

*Mutation was also 
found in some 
controls       

      1610G>A exon 2 Spanish (1) Lopez-Bigas 2001 

      1700C>T exon 2 Spanish (1) Lopez-Bigas 2001 

    V200I 1731G>A exon 2 Spanish (1) Lopez-Bigas 2001 

  
Erythrokeratoderm
ia Variabilis G12R 34G>C   Swiss (1) Richard 1998 

    G12D 35G>A   European (1) Richard 1998 

    R32W 1227C>T   N/A (1)  Kelsell 2000 

    L34P 101T>C   Israeli (1) Gottfried 2002 

    R42P 125G>C   N/A (1); Italian (1) 
Wilgoss 1999; 
Richard 2000 

    C86S 256T>A   Euroepan (2) Richard 1998 

    F137L 409T>C   British (1) Richard 2000 
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GENE 
LOCUS or 
SYNDROME 

AMINO ACID 
CHANGE 

NUCLEOTIDE 
CHANGE EXON 

ETHNICITY 
(Number of 
families) REFERENCES

GJB6 DFNA3  T5M C>T   Italian (1) Grifa 1999 

      del >140kb   
Ashkenazi Jewish 
(4) Lerer 2001* 

      

*found in compound 
hets with GJB2 
(DFNB1)       

      del 342kb    Spanish (22) Castillo 2002* 

      

*found in compound 
hets with GJB2 
(DFNB1)       

      del >150kb   N/A (5) 
Pallares-Ruiz 
2002* 

      

*homozygous or 
compound het with 
GJB2 (DFNB1)       

  

Hidrotic 
Ectodermal 
Dysplasia 
(Clouston 
Syndrome) G11R 31G>A   

French (2), Scottish-
Irish (1), African 
(1), Spanish (1), 
French Canadian (3) Lamartine 2000 

    V37E 110T>A   Scottish (1) Smith 2002 

    A88V 263C>T   

Indian (1), 
Malaysian (1), 
Welsh (1) Lamartine 2000 

KCNQ4 DFNA2 FS71 211del13 exon 1 Belgian (1) Coucke 1999 

    L274H 821T>A exon 5 Dutch (1) Van Hauwe 2000 

    W276S 827G>C exon 5 

Dutch (1); Japanese 
(1); Dutch (1), 
Japanese (1) 

Coucke 1999; 
Akita 2001; Van 
Camp 2002 

    L281S 842T>C exon 6 American (1) Talebizadeh 1999 

    G285C 853G>T exon 6 American (1) Coucke 1999 

    G285S G>A exon 6 French (1) Kubisch 1999 

    G321S 961G>A exon 7 Dutch (1) Coucke 1999 

MYO6 DFNA22  C442Y 1325G>A exon 12 Italian (1) Melchionda 2001 

POU3F4  DFN3    del1200kb   N/A (1) Arellano 2000 

      del entire gene N/A (1) de Kok 1996 

    Rearrangement   upstream N/A (1) de Kok 1995b 

      del 120kb upstream N/A (1) de Kok 1996 

      del 200kb upstream N/A (1) de Kok 1996 

      del 220kb upstream N/A (1) de Kok 1996 

      del 30kb upstream N/A (1) de Kok 1996 

      del 8kb upstream N/A (1) de Kok 1996 

      
del 2.6kb, 6.5kb, 7kb, 
4.4kb upstream   French (1) de Kok 1996 

    201-202delFK 601-606del6bp POU specific Japanese (1) Hagiwara 1998 

    K202X 603del4 POU specific N/A (1) de Kok 1995a 

    D215X 648delG POU specific N/A (1) de Kok 1995a 
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GENE 
LOCUS or 
SYNDROME 

AMINO ACID 
CHANGE 

NUCLEOTIDE 
CHANGE EXON 

ETHNICITY 
(Number of 
families) REFERENCES

    T230I 689C>T POU specific N/A (1) Friedman 1997 

    FS 862del4 POU homeo Finnish (1) 
Bitner-Glindzicz 
1995 

    L298X 895delA POU homeo N/A (1) de Kok 1995a 

    A312V 935C>T POU homeo British (1) 
Bitner-Glindzicz 
1995 

    L317W 950T>G POU homeo N/A (1) de Kok 1995a 

    R323G (mosaic) 967C>G POU homeo N/A (1) de Kok 1997 

    R329G 985C>G POU homeo N/A (1) Friedman 1997 

    R330S 990A>T POU homeo N/A (1) de Kok 1997 

    K334E 1000A>G POU homeo N/A (1) de Kok 1995a 

12S rRNA Associated with ototoxicity 961delTinsC   
Chinese (1); Italian 
(1) 

Bacino 1995; 
Casano 1999 

  Associated with ototoxicity 1095T>C   N/A (1) Tessa 2001 

 Associated with ototoxicity 1555A>G   

Arab-Israeli 
(1),Chinese (3); 
Japanese (2), N/A 
(4); Zairean (12); 
Japanese (5); 
Mongolian (2); 
Spanish (2); Greek 
(1), English/Irish 
(1), Italian (1), 
Mexican (1), Puerto 
Rican (1), 
Chinese/Japanese/C
aucasian (1), 
Vietnamese (1); S. 
African (1); Korean 
(1) Spanish (19); 
Italian (2); 
Spanish/Cuban (8); 
Japanese (1) 
Spanish (23); 
Filipino American 
(1); Japanese (4) 

Prezant 1993; 
Hutchin 1993a; 
Matthijs 1996; 
Usami 1997; 
Pandya 1997; El-
Schahawi 1997; 
Fischel-Ghodsian 
1997; Gardner 
1997; Chang 1997 
Estivil 1998; 
Casano 1998; 
Sarduy 1998; Tono 
1998 Castilo 2000; 
Nye 2000*; 
Oshima 2001 

(SLC26A4) DFNB4     IVS2-2A>G     Italian (1)  Lopez-Bigas 
2001 

      T132I  395C>T     Italian (1)  Lopez-Bigas 
2001 

      G209V  626G>T  exon 6  Caucasian (1)  Usami 1999 

         Found in Pendred 
by Van-Huawe 
1998  

    

      L236P  707T>C  exon 6  American (1)  Scott 2000 

      X308/wt  917delT  exon 7  Japanese (1)  Usami 1999 

      K369E  1105A>G  exon 9  Japanese (1)  Usami 1999 

      A372V  1115C>T  exon 9  Japanese (1)  Usami 1999 

      T410M  1229C>T  exon 10  Italian (1)  Lopez-Bigas 
2001 

         Found in Pendred 
by Coyle 1998  

    

      T416P/wt  recessive?     American (1)  Scott 2000 

         Found in Pendred 
by Van-Huawe 
1998  
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GENE 
LOCUS or 
SYNDROME 

AMINO ACID 
CHANGE 

NUCLEOTIDE 
CHANGE EXON 

ETHNICITY 
(Number of 
families) REFERENCES

      V480D  1440T>A  exon 13  American (1)  Scott 2000 

         Found in Pendred 
by Van Hauwe 
1998  

    

      I490L  1468A>C  exon 13  Indian (1)  Li 1998 

      G497S  1489G>A  exon 13  Indian (1)  Li 1998 

      V653A/wt  recessive?     American (1)  Scott 2000 

         Found with CX26 
35delG 
heterozygous  

    

         Found in Pendred 
by Campbell 2001  

      

      T721M  2162C>T  exon 19  Japanese (1)  Usami 1999 

         Found in Pendred 
by Lopez-Bigas 
2001  

    

      X722  2111insGCTGC  exon 19  Japanese (1)  Usami 1999 

      H723R  2168A>G  exon 19  Japanese (3); 
Japanese (1)  

Usami 1999; 
Ishinaga 2002 

         Found in Pendred 
by Van-Huawe 
1998  

    

                    

   Pendred 
Syndrome  

E29Q  85G>C  exon 2  N/A (1)  Campbell 2001 

      X96  279delT  exon 3  Brazilian (1)  Kopp 1999 

      Y105C  314A>G  exon 4  N/A (1)  Campbell 2001 

      A106D  317C>A  exon 4  N/A (1)  Campbell 2001 

      X180  336-337insT  exon 4  N/A (1)  Coyle 1998 

      FS135  406del5  exon 4  Spanish (1)  Lopez-Bigas 
2001 

      V138F  412G>T  exon 4  Belgian (1); N/A 
(1); N/A (1)  

Van-Huawe 
1998; Coyle 
1998; Cambpell 
2001 

      X141  IVS4+7A>G  exon 4  Spanish (1)  Lopez-Bigas 
1999 

      G139A  416G>C  exon 5  Dutch (1)  Van-Huawe 
1998 

      T193I  580C>T  exon 5  Middle Eastern 
(1)  

Adato 2000 

      G209V  626G>T  exon 6  Belgian (1); N/A 
(2)  

Van-Huawe 
1998; Campbell 
2001 

      L236P  707T>C  exon 6  Dutch (4), 
American (1), 
Danish (1), 
Belgian (1); N/A 
(10); N/A (1)  

Van-Huawe 
1998; Coyle 
1998; Campbell 
2001 

         Found in DFNB4 
by Scott 2000  

    

      X286  753delCTCT  exon 6  N/A (1)  Coyle 1998 

      X286  783-784insT  exon 7  N/A (1)  Campbell 2001 

      D271H  811G>C  exon 7  Turkish (1)  Van-Huawe 
1998 

      918+1G>A  IVS7+1G>A  intron 7  Indian (1)  Van-Huawe 
1998 
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GENE 
LOCUS or 
SYNDROME 

AMINO ACID 
CHANGE 

NUCLEOTIDE 
CHANGE EXON 

ETHNICITY 
(Number of 
families) REFERENCES

         IVS7-2A>G  intron 7  Turkish (1)  Couke 1999 

      1001+1G>A  IVS8+1G>A  intron 8  N/A (9); Italian 
(1); N/A (7)  

Coyle 1998; 
Bogazzi 2000; 
Campbell 2001 

      F335L  1003T>C  exon 9  N/A (1)  Campbell 2001 

      FS383  1149delC  exon 9  Dutch (1)  Van-Huawe 
1998 

      E384G  1151A>G  exon 10  N/A (6)  Coyle 1998 

      FS400, X431  1197delT  exon 10  Arabic (1); 
Lebanon (1) 
Italian (1); 
Spanish (1)  

Everett 1997; 
Van-Hauwe 
1998, Fugazzola 
2000; Lopez-
Bigas 2001 

      R409H  1226G>A  exon 10  Turkish (1); N/A 
(1)  

Van-Huawe 
1998, Coyle 
1998 

      T410M  1229C>T  exon 10  N/A (1)  Coyle 1998 

         Found in DFNB4 
by Lopez-Bigas 
2001  

    

      T416P  1246A>C  exon 10  Dutch (4), Danish 
(1); N/A (7); N/A 
(5)  

Van-Huawe 
1998; Coyle 
1998; Campbell 
2001 

         Found in DFNB4 
by Scott 2000  

    

      A429del  1284delTGC  exon 11  N/A (1)  Coyle 1998 

      L445W  1334T>G  exon 11  Dutch (1); 
Turkish (1); 
Southern Tunisian 
(2); Italian (1)  

Van-Huawe 
1998; Couke 
1999; Masmoudi 
2000; Lopez-
Bigas 2001 

      X454  1341delG  exon 12  Arabic (1)  Everett 1997 

      X467  1334insAGTC  exon 12  N/A (1)  Coyle 1998 

      V480D  1440T>A  exon 13  N/A (1)  Campbell 2001 

      T508N  1523C>A  exon 13  Italian (1)  Bogazzi 2000 

      X524  1536delAG  exon 13  N/A (1)  Coyle 1998 

      Y530H  1588T>C  exon 14  N/A (1); N/A (2)  Coyle 1998; 
Campbell 2001 

      Y556C  1667A>G  exon 15  N/A (1)  Coyle 1998 

      Y556H  1666T>C  exon 15  Italian (1)  Lopez-Bigas 
2001 

      C565Y  1918G>A  exon 15  American (1)  Van-Huawe 
1998 

      L597S  1790T>C  exon 16  N/A (3)  Campbell 2001 

      S610X        Japanese (1)  Kiyomizu 2002 

      FS634  1898del A  exon 17  Belgian (1)  Van-Huawe 
1998 

      V653A  1958T>C  exon 17  N/A (1)  Campbell 2001 

         Found in DFNB4 
by Scott 2000  

    

      S657N     exon 17  Japanese (1)  Kiyomizu 2002 

      F667C  2000T>G  exon 17  Arabic (1)  Everett 1997 

      G672E  2015G>T  exon 17  N/A (1); N/A (2)  Coyle 1998; 
Campbell 2001 

      X719  2127delT  exon 19  N/A (1)  Coyle 1998 
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GENE 
LOCUS or 
SYNDROME 

AMINO ACID 
CHANGE 

NUCLEOTIDE 
CHANGE EXON 

ETHNICITY 
(Number of 
families) REFERENCES

      T721M  2162C>T  exon 19  Italian (2)  Lopez-Bigas 
2001 

         Homozygote had 
hypothyroidsim, 
but not goiter  

    

         Found in DFNB4 
by Usami 1999  

    

      H723R  2168A>G  exon 19  Dutch (1); 
Japanese (1)  

Van-Huawe 
1998; Ishinaga 
2002 

         Found in DFNB4 
by Usami 1999  

    

      Y728X  2182insG  exon 19  Italian (1)  Fugazzola 2000 

      X781W  2343A>G     Italian (1)  Lopez-Bigas 
2001 

Table 9. 
This table is an edited and slightly modified version of the table found at 

http://hearing.harvard.edu/db/genelist.htm. The GJB2 gene has been left out for convenience. 

9.2 The regions we studied, and amplificates of the regions 
Gene Exon Amplificate  

 # start end length start end length Name 

GJB2 1 1430 2110 681 1385 1804 420 DF1f 
    1798 2121 324 DF2f 
12SrRNA 1 650 1603 954 1400 1620 221 DF3f 

 
TRNS1-
TRND 7446 7586 141 7336 7600 265 DF4f 

COCH 4 4235 4386 152 4192 4477 286 DF5f 
 5 4865 4927 63 4733 5125 393 DF6f 
 6 and 7 5894 6176 283 5854 6196 343 DF7f 
GJA1 1 11207 12355 1149 11201 11335 135 DF8f 
GJB3 1 1674 2486 813 1636 1979 344 DF9f 
     1961 2240 280 DF10f 
     2239 2492 254 DF11f 
GJB6 1 734 1519 786 724 1082 359 DF12f 
     1077 1340 264 DF13f 
     1272 1583 312 DF14f 
KCNQ4 1 83 396 314 8 415 408 DF15f 
 5 35336 35461 126 35281 35477 197 DF16f 
 6 and 7 35864 36249 386 35861 36262 402 DF17f 
SLC26A4 4 13530 13714 185 13463 13829 367 DF18f 
 6 and 7 22568 22903 336 22524 22920 397 DF19f 
 10 and 11 33769 34082 314 33764 34143 380 DF20f 
 13 37408 37477 70 37358 37555 198 DF21f 
 17 43697 43751 55 43648 43799 152 DF22f 
 19 51905 51988 84 51858 52086 229 DF23f 
POU3F4 1 33 1119 1087 15 405 391 DF24f 
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Gene Exon Amplificate  

 # start end length start end length Name 

     401 783 383 DF25f 
     777 1132 356 DF26f 
MYO6 2 68301 68464 164 68259 68570 312 DF31f 
  91363 91504 142 91332 91518 187 DF32f 
  92003 92199 197 91872 92216 345 DF33f 
 31 164846 165097 252 164830 165193 364 DF34f 
GJB2 1 1430 2110 681 1798 2124 327 DF35f 
     1651 1804 154 DF36f 
GJB6 1 734 1519 786 734 981 248 DF37f 
     978 1233 256 DF38f 
     1226 1531 306 DF39f 
POU3F4 1 33 1119 1087 20 277 258 DF40f 
     259 571 313 DF41f 
     454 809 356 DF42f 
     803 1134 332 DF43f 
SLC26A4 4 13530 13714 185 13523 13733 211 DF44f 
 6 and 7 22568 22903 336 22558 22837 280 DF45f 
     22690 23042 353 DF46f 
KCNQ4 6 and 7 35864 36249 386 35864 36152 289 DF47f 
     36059 36263 205 DF48f 
COCH 5 4865 4927 63 4733 4959 227 DF49f 
GJB2 1 1430 2110 681 809  
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9.3 Sequences of PCR primers used in the PCR experiments 

9.3.1 Forward primers 

Name Length Forward primer Tm 

DF1f 23 CCCTCTCATGCTGTCTATTTCTT 51,3 
DF2f 22 TCCTCTTCTTCTCATGTCTCCG 52,6 
DF3f 23 TATGAAACTTAAGGGTCGAAGGT 51 
DF4f 22 TCGAAGCGAAAAGTCCTAATAG 50,4 
DF5f 20 AGTCAGTGGGATGCCCTGAA 54,2 
DF6f 23 GCAGCAGGATGTTTGTAACTACA 51,5 
DF7f 22 GTCTTCCTTTTGTTAATGCCAA 50,7 
DF8f 20 GGCAACATGGGTGACTGGAG 55 
DF9f 20 ATTGGCAGCCCGCATGTTGC 62,5 
DF10f 20 AGTCCACGATGTTGGGGCAG 57 
DF11f 20 AAGATGAGCTGCAGGGCCCA 59,2 
DF12f 22 CTTGAAATGTTTAGCTTGGGAA 50,9 
DF13f 21 GCTTCAAAGATGATTCGGAAA 51,3 
DF14f 20 AAGATCAGCTGGAGGGCCCA 58,2 
DF15f 20 CGTCTCTGAGCGCCCCGAGC 63,9 
DF16f 20 ACATCTCCCAGGCAGGCACA 57,6 
DF17f 23 CAGATTACATTGACAACCATCGG 53,6 
DF18f 23 CCTATGCAGACACATTGAACATT 51,1 
DF19f 20 GCGTGTAGCAGCAGGAAGTA 50,7 
DF20f 20 TCCAGGTTGCTGGCATCATC 55,6 
DF21f 20 CAAAATACGGCTGTTCCAAA 50,5 
DF22f 22 GGGCAGATAAGGTTGTTAATTG 50,2 
DF23f 23 GGTGGGTTGATGCTATTCTATTT 51,1 
DF24f 20 AGGGGATCCTCACCGACCAT 56,7 
DF25f 20 TATCACGTCAAGCGGCCAAC 55,9 
DF26f 20 GAAGCCCCTGCTGAACAAGT 53,3 
DF31f 22 TCAAAACTGATTCATGTTGCTG 50,5 
DF32f 22 TTGTAATGTTCCGTCATGCTAA 50,3 
DF33f 22 GTTTTTTCCCCTTTATTTGGTG 51,6 
DF34f 23 TGCTGGTATAACTTTCCTTGTTC 50 
DF35f 22 TCCTCTTCTTCTCATGTCTCCG 52,6 
DF36f 20 AGACGTACATGAAGGCGGCT 53,8 
DF37f 21 TTAGCTTGGGAAACCTGTGAT 50,7 
DF38f 20 AAGCAGTCAACAAGGTTGGG 51,6 
DF39f 20 GTAGTAGGCCACATGCATGG 50,4 
DF40f 20 ATCCTCACCGACCATGGCCA 59,6 
DF41f 20 TGGACCAGCAGGACGTGAAG 55,8 
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Name Length Forward primer Tm 

DF42f 20 TGAGCGGCATGCTGGAACAC 59,2 
DF43f 20 AGGAGGCGGATTCGTCCACA 59 
DF44f 20 TCCCCAGGACCTTTTCCAGT 54,7 
DF45f 23 CTTTTTATAGACGCTGGTTGAGA 50,4 
DF46f 23 CCCAGTCCCTATTCCTATAGAAG 50,2 
DF47f 21 ATTACATTGACAACCATCGGC 51,5 
DF48f 22 GGTACCTCAGAGGGGCAAGGAT 57,2 
DF49f 23 GCAGCAGGATGTTTGTAACTACA 51,5 
GJB2seq4F  23 GGCCTACAGGGGTTTCAAATGGT  

Tm: melting temperature 
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9.3.2 Reverse primers 

Name Length Reverse primer Tm 

DF1r 21 AAGAGGAAGTTCATCAAGGGG 51,5 
DF2r 22 GCCCAGAGTAGAAGATGGATTG 52,1 
DF3r 23 TGTTAAGCTACACTCTGGTTCGT 50,4 
DF4r 23 GCTGCATGTGCCATTAAGATATA 51,6 
DF5r 21 CCATCAAGGTTAAAGAGGCTG 50,9 
DF6r 23 CAACAGAGTGAGACCCTGTCTTT 51,7 
DF7r 23 CATTTTAACAAGGTTGGTACCTG 50,3 
DF8r 20 TGACTCAACCGCTGTCCCCA 58,5 
DF9r 20 TGCCCCAACATCGTGGACTG 58,8 
DF10r 20 TTCGTCACATGCCCCTCGCT 60 
DF11r 20 AGGCGCCATGGACTGGAAGA 59,1 
DF12r 23 TGAAGCAGCCTTTATGTATGTGT 51,1 
DF13r 23 CAAAAATGTGTGCTATGACCACT 51,2 
DF14r 20 CCCAAGGCCTCTTCCACTAA 53,3 
DF15r 20 CGCGGGGTCGCAAACTCACA 63,6 
DF16r 20 AAAGACCCTCACGCACCGTC 56,3 
DF17r 21 GGGCATCTTGTACCTGGATGA 53,8 
DF18r 23 GGGTTCCAGGAAATTACTTTGTT 52,5 
DF19r 20 AGGAACACCACACTCACCCC 53,3 
DF20r 22 GGCAGGAAGCATATAAGAACCA 52,8 
DF21r 22 CCTTGTACGTAAAATGGAGCTG 51,2 
DF22r 22 GGCTTACGGGAAAGTCTTACAG 51,8 
DF23r 23 TTCCCTGACAGTTCTTAATCAGA 50,1 
DF24r 20 TGATAGACGGGTTCGGTGCC 57 
DF25r 21 GGGCTTCAGCTTGCACATATT 53,6 
DF26r 20 TCGCTTCCTCCAGTCAGAGA 52,3 
DF31r 23 GCTTTCCCAAATATCTACCTCAT 50,5 
DF32r 22 CCCAAAAATATCATTCCAAAGC 52,3 
DF33r 22 GCACCTGGCTATATGAAATTTC 50,2 
DF34r 23 CCCTCAACCCTGAAATGTAATAA 51,9 
DF35r 22  GCCCAGAGTAGAAGATGGATTG 52,1 
DF36r 21 AAGAGGAAGTTCATCAAGGGG 51,5 
DF37r 23 GCTTTATTTCTAGGCCAACAGAG 53,5 
DF38r 22  CCTACTACAGGCACGAAACCAC 53,1 
DF39r 20  TAAACCAGCGCAATGGATTG 53,7 
DF40r 20  TTCACGTCCTGCTGGTCCAG 55,8 
DF41r 20  CAATGGTGCGAGCCCAGTTC 57,7 
DF42r 20 GCCTCCTCCAGCCACTTGTT 55,5 
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Name Length Reverse primer Tm 

DF43r 20 CCTCGCTTCCTCCAGTCAGA 54,2 
DF44r 21 GCACCTGACCTAAAACAACGT 51 
DF45r 23 GCAGTAGCAATTATCGTCTGAAA 51 
DF46r 23 GTTTCTTCCAGATCACACACAAA 51 
DF47r 20 TAGAGGGATAGGGCATGGTT 50,3 
DF48r 20 CGGGCATCTTGTACCTGGAT 53,8 
DF49r 23 GGCAACTAGGAGATAGGTTTCAT 50,5 

GJB21R 20 TCATCCCTCTCATGCTGTCT  
Tm: melting temperature 



 

 

70

 

 

10 Appendix B– Summary tables of mutations 

10.1 GJB2 35delG allele 

CI GJB2 Mutation # of audiograms
Type of audiogram 

(dB) 
dHPLC/Other 
SNP in primer 

 
Gene 

CI 35 delG-- 2 90-100 DF33 MYO6 
CI 35 delG-- 7 50-70   

CI 35 delG-- 9 
80-120 one side 

only DF33 
MYO6 

CI 35 delG-- 24 100   
CI 35 delG--     
CI 35 delG--     
CI 35 delG-- 7 no hearing   
CI 35 delG-- 3 60   
 35 delG-- 8 70-90   
 35 delG--     
 35 delG--     
 35 delG-- 1 80-90   
 35 delG-- 1 OK   
 35 delG-- 1 30-75   
 35 delG-- 1 residual hearing   
 35 delG--   DF48 KCNQ4 
 35 delG--     
 35 delG-- 1 90-120 DF48 KCNQ4 

 35 delG-- 1 
0.25kHz-1kHz 

80-110, >2kHz 0  
 

 35 delG--     
 35 delG-- 3 75-110   
 35 delG-- 4 70-100   
 35 delG--     
 35 delG--     
 35 delG+-     
 35 delG+- 1 norm   
 35 delG+- 1 norm   
 35 delG+-     
CI 35 delG+-  8 70-90 DF9 GJB3 

CI 35 delG+-  5 
70-80 on 2 freq. 

Only  
 

CI 35 delG+-      
 35 delG+-      
 35 delG+-      
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CI GJB2 Mutation # of audiograms
Type of audiogram 

(dB) 
dHPLC/Other 
SNP in primer 

 
Gene 

 35 delG+-      
 35 delG+-    DF33 MYO6 
 35 delG+-  1 OK DF9 GJB3 
 35 delG+-    DF33 MYO6 
 35 delG+-    DF11,DF33 GJB3, MYO6 
 35 delG+-    DF37 GJB6 
 35 delG+-      
 35 delG+-    DF 33 MYO6 

 35 delG+-    
DF11, 

DF17, DF48 
GJB3, KCNQ4, 

KCNA4 
 35 delG+-    DF9, DF11 GJB3, GJB3 
 35 delG+-  1 50-60 DF6, DF11 COCH, GJB3 
 35 delG+-      
 35 delG+-  1 5-35   
 35 delG+-      
 35 delG+-      
 35 delG+-      
 35 delG+-      
 35 delG+-      
 35 delG+-      
 35 delG+-      
 35 delG+-      
 35 delG+-    DF48 KCNQ4 
 35 delG+-  1 ~80   
 35 delG+-      
 35 delG+-    DF4 12srRNA 
 35 delG+-    DF48 KCNQ4 
 35 delG+-    DF4 12srRNA 
 35 delG+-  1 no hearing   
 35 delG+-  2 no hearing   
 35 delG+-      
 35 delG+-    DF4 12srRNA 
 35 delG+-      
 35 delG+-    DF4 12srRNA 
 35 delG+-      
 35 delG+-    DF4 12srRNA 
 35 delG+-      
 35 delG+-  2 100-110 DF4 12srRNA 
 35 delG+-      

 
35 delG+- / 
G139T+-    DF4 

12srRNA 
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CI GJB2 Mutation # of audiograms
Type of audiogram 

(dB) 
dHPLC/Other 
SNP in primer 

 
Gene 

 
35 delG+- / 

G71A+-    
 

 
35 delG+- / 

G71A+-    
 

CI 

35 delG+- 
G95A-R32H 

+- 4 55-110 
DF9, DF11, 

DF17 

GJB3, GJB3, 
KCNQ4 

 

10.2 Other GJB2 mutations 

CI 
GJB2 

Mutation 
# of 

audiograms 
Type of 

audiogram (dB)
dHPLC 
primer 

 
Gene 

 176 delG +- 16 65-110   

 
35 delG+- / 
G139T+-    DF4 

12srRNA 

 
35 delG+- / 

G71A+-    
 

 
35 delG+- / 

G71A+-    
 

CI 

35 delG+- 
G95A-R32H 

+- 4 55-110 
DF9, DF11, 

DF17 
GJB3, GJB3, 

KCNQ4 

 
A 341 G+- / 

E114G+-   DF12 
GJB6 

 C 164 T+-     
 G 380 A+-     
CI G 478 A+- 18 80-115   

 
G109A +- 

V37I   DF9 
GJB3 

CI 
G109A +- 

V37I 5 residual hearing  
 

 G139T+-     

 G380A -- 1 
-50-90 with 
hearing aid DF48 

KCNQ4 

 G380A --     

 
G380A +- / 

56insC    
 

CI 
G380A +- 

R127H    
 

 
G380A +- 

R127H   DF6 
COCH 

 G380A +-   DF48 KCNQ4 
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CI 
GJB2 

Mutation 
# of 

audiograms 
Type of 

audiogram (dB)
dHPLC 
primer 

 
Gene 

R127H 

 
G380A +- 

R127H 1 90-120  
 

 
G380A +- 

R127H    
 

 
G71A +- 

W24STOP +- 1 
left: 40-70; right: 

80-110 DF48 
KCNQ4 

 
G95A-R32H 

+-   
DF9, DF17, 

DF33 
GJB3, KCNQ4, 

MYO6 

 
T101C-M34T 

+- 7 65-90  
 

CI 
T269C+- 

L90P 2 100  
 

 

10.3 12s rRNA 

CI 
GJB2 

Mutation 
# of 

audiograms 
Type of 

audiogram (dB) 
dHPLC 
primer Gene 

  2 25-60 
DF4, DF19, 

DF49 
12srRNA, 

SLC26A4, COCH
  2 50-70; 30-80 DF4, DF9 12srRNA, GJB3 
    DF4, DF17 12srRNA, KCNQ4

  12 50-90 
DF4, DF11, 

DF33 
12srRNA, GJB3, 

MYO6 
control    DF4 12srRNA 
control    DF4, DF48 12srRNA, KCNQ4

control    
DF4, DF16, 

DF48 
12srRNA, 

KCNQ4, KCNQ4 
CI    DF4 12srRNA 
    DF4 12srRNA 
 35 delG+-    DF4 12srRNA 
 35 delG+-    DF4 12srRNA 
    DF4 12srRNA 
    DF4 12srRNA 
 35 delG+-    DF4 12srRNA 

 
35 delG+- / 
G139T+-    DF4 12srRNA 

CI    DF4 12srRNA 
    DF4 12srRNA 
    DF4 12srRNA 
    DF4 12srRNA 



 

 

74

 

CI 
GJB2 

Mutation 
# of 

audiograms 
Type of 

audiogram (dB) 
dHPLC 
primer Gene 

    DF4 12srRNA 
  2 no hearing DF4 12srRNA 
CI  20 90-100 DF4 12srRNA 
    DF4 12srRNA 
    DF4 12srRNA 
 35 delG+-    DF4 12srRNA 
    DF4 12srRNA 
 35 delG+-    DF4 12srRNA 
 35 delG+-  2 100-110 DF4 12srRNA 

 

10.4 COCH 

CI 
GJB2 

Mutation 
# of 

audiograms 
Type of 

audiogram (dB)
dHPLC 
primer Gene 

  2 25-60 
DF4, DF19, 

DF49 

12srRNA, 
SLC26A4, 

COCH 
    DF6 COCH 
CI  4 55-65 (HK!) DF6 COCH 
 35 delG+-  1 50-60 DFf6, DF11 COCH, GJB3 

 
G380A +- 

R127H   DF6 COCH 
HK: measured with hearing aid 

10.5 GJB3 

CI 
GJB2 

Mutation 
# of 

audiograms 
Type of 

audiogram (dB)
dHPLC 
primer Gene 

    DF9,DF48 GJB3,KCNQ4 
 35 delG+-  1 OK DF9 GJB3 
    DF9,DF48 GJB3,KCNQ4 
    DF9, GJB3, 
    DF9,DF33 GJB3,MYO6 

CI  2 20-40 
DF9,DF11,D

F33 
GJB3,GJB3,MY

O6 
CI  8 no hearing DF9,DF33 GJB3,MYO6 
 35 delG+-    DF11,DF33 GJB3,MYO6 
CI  19 110-120 DF9,DF17 GJB3,KCNQ4 
    DF9,DF17 GJB3,KCNQ4 
  2 50-70;30-80 DF4, DF9 12srRNA, GJB3

 
G109A +- 

V37I   DF9 GJB3 
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CI 
GJB2 

Mutation 
# of 

audiograms 
Type of 

audiogram (dB)
dHPLC 
primer Gene 

CI 35 delG+-  8 70-90 DF9 GJB3 
CI  6 100 DF9 GJB3 
  1 30-100 DF11 GJB3 

  12 55-90 
DF4, DF11, 

DF33 
12srRNA, GJB3

, MYO6 

 35 delG+-    
DF11, 

DF17, DF48 
GJB3, KCNQ4, 

KCNQ4 

CI 

35 delG+- 
G95A-R32H 

+- 4 55-110 
DF9, DF11, 

DF17 
GJB3, GJB3, 

KCNQ4 
 35 delG+-    DF9, DF11 GJB3, GJB3 

 
G95A-R32H 

+-   
DF9, DF17, 

DF33 
GJB3, KCNQ4, 

MYO6 
  3 10-20 DF9, DF11  GJB3, GJB3  
    DF11 GJB3 

    
DF9, DF11, 

DF48 
GJB3, GJB3, 

KCNQ4 
  9 100 DF11, DF48 GJB3, KCNQ4
    DF11 GJB3 
 35 delG+-  1 50-60 DFf6, DF11 COCH, GJB3 
control    DF9, DF17 GJB3, KCNQ4

 

10.6 GJB6 

CI 
GJB2 

Mutation 
# of 

audiograms 
Type of 

audiogram (dB)
dHPLC 
primer Gene 

    DF37 GJB6 
 35 delG+-    DF37 GJB6 

 
A 341 G+- / 

E114G+-   DF12 GJB6 
CI  1 no hearing DF12 GJB6 
    DF12 GJB6 

10.7 KCNQ4 

CI 
GJB2 

Mutation 
# of 

audiograms 
Type of 

audiogram (dB)
dHPLC 
primer Gene 

    DF9,DF48 GJB3,KCNQ4 
    DF9,DF48 GJB3,KCNQ4 
    DF48 KCNQ4 
    DF17 KCNQ4 
    DF33,DF48 MYO6,KCNQ4
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CI 
GJB2 

Mutation 
# of 

audiograms 
Type of 

audiogram (dB)
dHPLC 
primer Gene 

CI  19 100-120 DF9,DF17 GJB3,KCNQ4 
  1 OK DF9,DF17 GJB3,KCNQ4 
CI  7 70-80 DF17 KCNQ4 
    DF17 KCNQ4 
    DF17, DF33 KCNQ4, MYO6
CI  4 60-100 DF17 KCNQ4 

    DF4, DF17 
12srRNA, 
KCNQ4 

CI  1 55-85 DF48 KCNQ4 

 35 delG+-    
DF11, 

DF17, DF48 
GJB3, KCNQ4, 

KCNQ4 

CI 

35 delG+- 
G95A-R32H 

+- 4 55-110 
DF9, DF11, 

DF17 
GJB3, GJB3, 

KCNQ4 

 
G95A-R32H 

+-   
DF9, DF17, 

DF33 
GJB3, KCNQ4, 

MYO6 

    
DF9, DF11, 

DF48 
GJB3, GJB3, 

KCNQ4 
  9 100-110 DF11, DF48 GJB3, KCNQ4
control    DF9, DF17 GJB3, KCNQ4

control    DF4, DF48 
12srRNA, 
KCNQ4 

control    
DF4, DF16, 

DF48 

12srRNA, 
KCNQ4, 
KCNQ4 

  17 55-90 DF48 KCNQ4 
 35 delG --   DF48 KCNQ4 
    DF48 KCNQ4 
 35 delG+-    DF48 KCNQ4 

 
G71A +- 

W24STOP +- 1 40-70;80-110 DF48 KCNQ4 

 
G380A +- 

R127H   DF48 KCNQ4 
 G380A -- 1 100-120 DF48 KCNQ4 
    DF48 KCNQ4 
 35 delG -- 1 90-120 DF48 KCNQ4 
 35 delG+-    DF48 KCNQ4 
    DF48 KCNQ4 
    DF48 KCNQ4 
    DF48 KCNQ4 
    DF48 KCNQ4 
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10.8 SLC26A4 

CI 
GJB2 

Mutation 
# of 

audiograms 
Type of 

audiogram (dB)
dHPLC 
primer Gene 

  2 25-90 
DF4, DF19, 

DF49 

12srRNA, 
SLC26A4, 

COCH 
    DF22 SLC26A4 

 

10.9 MYO6 

CI 
GJB2 

Mutation 
# of 

audiograms 
Type of 

audiogram (dB)
dHPLC 
primer Gene 

CI 35 delG -- 2 90-00 DF33 MYO6 
 35 delG+-    DF33 MYO6 
    DF33 MYO6 
CI  9 80-120 DF33 MYO6 
    DF9,DF33 GJB3,MYO6 
    DF33 MYO6 

CI  2 20-40 
DF9,DF11,D

F33 
GJB3,GJB3,MY

O6 
CI  8 no hearing DF9,DF33 GJB3,MYO6 
    DF33 MYO6 
 35 delG+-    DF33 MYO6 
 35 delG+-    DF11,DF33 GJB3,MYO6 

CI 35 delG -- 9 
80-120 on one 

side DF33 MYO6 
    DF33,DF48 MYO6,KCNQ4
CI  14 80-120 DF33 MYO6 
    DF17, DF33 KCNQ4, MYO6
CI  1 10 DF33 MYO6 
CI  1 no hearing DF33 MYO6 
CI    DF33 MYO6 

  12 55-90 
DF4, DF11, 

DF33 
12srRNA, 

GJB3, MYO6 
 35 delG+-    DF 33 MYO6 

 
G95A-R32H 

+-   
DF9, DF17, 

DF33 
GJB3, KCNQ4, 

MYO6 
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10.10  Cochlear implant users 

CI 
GJB2 

Mutation 
# of 

audiograms 
Type of 

audiogram (dB)
dHPLC 
primer Gene 

CI 35 delG -- 2 90-100 DF33 MYO6 
CI  3 80-110; 70-90   
CI  5 60   
CI 35 delG -- 7 50-70   
CI  5 40-80   
CI  8 80-120   
CI  9 80-120 DF33 MYO6 

CI  2 20-40 
DF9,DF11,D

F33 
12srRNA, 

GJB3, MYO6 

CI  8 no hearing DF9,DF33 
12srRNA, 

MYO6 
CI  6 20-30 ->10   
CI 35 delG -- 9 80-120 on one ear DF33 MYO6 
CI  14 80-120 DF33 MYO6 

CI  19 110-120 DF9,DF17 
12srRNA, 
KCNQ4 

CI  12 120   
CI  7 70-80 DF17 KCNQ4 
CI  4 60-100 DF17 KCNQ4 
CI  4 55-65 DF6 COCH 
CI  12 70-100   
CI 35 delG+-  8 70-90 DF9 GJB3 
CI  1 10 DF33 MYO6 
CI 35 delG+-  5 80 on 2 freqs only   
CI      

CI 
T269C+- 

L90P 2 100   
CI  1 20-30   
CI  6 100 DF9 GJB3 
CI  1 55-85 DF48 KCNQ4 
CI  1 noe hearing DF33 MYO6 
CI    DF33 MYO6 

CI 

35 delG+- 
G95A-R32H 

+- 4 55-110 
DF9, DF11, 

DF17 
KCNQ4, GJB3, 

KCNQ4 
CI 35 delG+-      

CI 
G109A +- 

V37I 5 residual hearing   
CI  5 100   
CI 35 delG -- 24 100   
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CI 
GJB2 

Mutation 
# of 

audiograms 
Type of 

audiogram (dB)
dHPLC 
primer Gene 

CI  4 no hearing   

CI 
G380A +- 

R127H     
CI      
CI    DF4 12srRNA 
CI      
CI      
CI      
CI      
CI 35 delG --     
CI 35 delG --     
CI  1    
CI  9 100   
CI 35 delG -- 7 no hearing   
CI    DF4 12srRNA 
CI  6 65-90   
CI  1 no hearing DF12 GJB6 
CI  20 90-100 DF4 12srRNA 
CI G 478 A+- 18 80-115   
CI 35delG -- 3 60   
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Appendix C 

11 Appendix C– dHPLC parameters 
Primer name Program Tempreature °C 

DF1f Medium 58 
DF2f Medium 63 
DF3f Medium 55 
DF4f Medium 56, 57 
DF5f Long 59 
DF6f Long 56 
DF7f Long 55, 57 
DF8f Short 61,8 
DF9f Long 62 
DF10f - - 

DF11f 
Long, 
Medium 

64, 60 

DF12f Long 59 
DF13f Long 61 
DF14f Long 59 
DF15f - - 
DF16f Long 63 
DF17f Long 60 
DF18f Medium 54 
DF19f Medium 54 
DF20f Long 58 
DF21f Medium 56 
DF22f Short 53 
DF23f Medium 55 
DF24f Long 63 
DF25f Long 63 
DF26f Long 62 
DF31f Long 56 

DF32f 
Long. 
Short 

53, 59 

DF33f Medium 56 

DF34f 
Long, 
Medium 

50, 58 

DF35f Long 60 
DF36f Medium 60 
DF37f Long 56 
DF38f Long 58 
DF39f Long 62 
DF40f Long 60 
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Primer name Program Tempreature °C 

DF41f Long 62 
DF42f Long 63 
DF43f Long 63 
DF44f Long 57 
DF45f Long 55 
DF46f Long 55 
DF47f Long 58 
DF48f Medium 58, 64 
DF49f Medium 57 

Table 10. 
The primers, and the programs and temperatures they were measured at 

 
  

Plate type and size 96 Well Low  Syringe Speed Normal 
Syringe volume 250 μl  Speed factor 1.0 

Sample Loop Volume 200 μl  Needle height 4 mm 
Needle Tubing Volume 30 μl  Flush volume 30 μl 

First transport vial T/R Vial 1  Plate Cooling Setpoint 12 °C 
Last Tranposrt Vial T/R Vial 4  End Time 1:00 min 
plate cooling enabled     

Table 11. 
Configuration options for the dHPLC syringe and plates. 

These were common for all experiments 
 
 

Long (@65 °C)      
Pump and CÍM 

program Time (min:sec) %A %B
Flow 

(ml/min) 
Data 

acquisition 
 0:00 48 52 0.5 begin 
 0:01 43 57   
 3:00 34 66   
 3:30 34 66   
 3:31 48 52   
 4:30 48 52 0.5 end 
      

Shutdown program 0:00 100 0 0  
 1:00 100 0 0  

Oven Control 65 °C     
Table 12. 

Example configuration options for the Long method @65 °C. This table shows the ratios of „A” and „B” 
buffers over the course of one experiment. The temperature is shown in the last line. 
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Medium (@ 60 °C)      
Pump and CÍM 

program Time (min:sec) %A %B
Flow 

(ml/min) 
Data 

acquisition 
 0:00 54 46 0.5 begin 
 0:01 49 51   
 3:00 40 60   
 3:30 40 60   
 3:31 54 46   
 4:30 54 46 0.5 end 
      

Shutdown program 0:00 100 0 0  
 1:00 100 0 0  

Oven Control 60 °C     
Table 13. 

Example configuration options for the Medium method @60 °C. This table shows the ratios of „A” and 
„B” buffers over the course of one experiment. The temperature is shown at the last line. 

 
 

Short (@ 52 °C)      
Pump and CÍM 

program Time (min:sec) %A %B
Flow 

(ml/min) 
Data 

acquisition 
 0:00 59 41 0.5 begin 
 0:01 54 46   
 3:00 45 55   
 3:30 45 55   
 3:31 59 41   
 4:30 59 41 0.5 end 
      

Shutdown program 0:00 100 0 0  
 1:00 100 0 0  

Oven Control 52 °C     
Table 14. 

Example configuration options for theShort method @52 °C. This table shows the ratios of „A” and „B” 
buffers over the course of one experiment. The temperature is shown at the last line. 
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12 Appendix D - Sample dHPLC chromatograms 

12.1 GJB2 (35delG) chromatograms 

 
Figure 13. 

A sample dHPLC chromatogram showing a homozygous wild type (pink line), a heterozygpous (green 
line), and a homozygous 35delG (blue line) sample 

 

 
Figure 14. 

Sample dHPLC chromatograms showing an M34T (red line), and a wild type allele (green line) 
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Figure 15. 

Sample dHPLC chromatograms showing an R32H heterozygote (red line), and a wild allele (green line) 
 

 
Figure 16. 

Sample chromatograms showing a 35delG+- + R32H compound heterozygote (red line), and a wild 
genotype sample (green line) 
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12.2 Examples of dHPLC chromatograms from other genes, with 
audiograms 

 
Figure 17. 

Sample chromatograms from the KCNQ4 gene, showing an SNP (red line), with the “average” 
chromatograms (various, non-red colors), and the audiogram of the patient. 

 

 
Figure 18. 

Sample chromatograms from the 12s rRNA gene (DF4 region), showing an SNP (red line), and the 
“average” chromatograms. The audiogram of the patient is shown to the left. This particular patient has 

SNPs in SLC26A4 and COCH, but they are not shown for clarity. 
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Figure 19. 

The figure shows COCH, DF6 region with an SNP (blue line), and the “average samples” with an 
audiogram. 

 

 
Figure 20. 

The figure shows the chromatogram of an SNP in GJB3 in the DF9 region (red line), with an audiogram 
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